Skip to content

Commit 2d187eb

Browse files
committed
Rebuild dev docs at master=8b78293
1 parent fd2730e commit 2d187eb

File tree

234 files changed

+2055
-1442
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

234 files changed

+2055
-1442
lines changed

dev/_downloads/plot_classifier_comparison.py

Lines changed: 6 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -41,14 +41,13 @@
4141
from sklearn.tree import DecisionTreeClassifier
4242
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
4343
from sklearn.naive_bayes import GaussianNB
44-
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
4544
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
4645

4746
h = .02 # step size in the mesh
4847

4948
names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Gaussian Process",
5049
"Decision Tree", "Random Forest", "AdaBoost", "Naive Bayes",
51-
"Linear Discriminant Analysis", "Quadratic Discriminant Analysis"]
50+
"QDA"]
5251

5352
classifiers = [
5453
KNeighborsClassifier(3),
@@ -59,7 +58,6 @@
5958
RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),
6059
AdaBoostClassifier(),
6160
GaussianNB(),
62-
LinearDiscriminantAnalysis(),
6361
QuadraticDiscriminantAnalysis()]
6462

6563
X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
@@ -76,7 +74,7 @@
7674
figure = plt.figure(figsize=(27, 9))
7775
i = 1
7876
# iterate over datasets
79-
for ds in datasets:
77+
for ds_cnt, ds in enumerate(datasets):
8078
# preprocess dataset, split into training and test part
8179
X, y = ds
8280
X = StandardScaler().fit_transform(X)
@@ -92,6 +90,8 @@
9290
cm = plt.cm.RdBu
9391
cm_bright = ListedColormap(['#FF0000', '#0000FF'])
9492
ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
93+
if ds_cnt == 0:
94+
ax.set_title("Input data")
9595
# Plot the training points
9696
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
9797
# and testing points
@@ -129,7 +129,8 @@
129129
ax.set_ylim(yy.min(), yy.max())
130130
ax.set_xticks(())
131131
ax.set_yticks(())
132-
ax.set_title(name)
132+
if ds_cnt == 0:
133+
ax.set_title(name)
133134
ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'),
134135
size=15, horizontalalignment='right')
135136
i += 1
31.6 KB
Loading
31.6 KB
Loading
165 KB
Loading
Loading

dev/_sources/auto_examples/classification/plot_classifier_comparison.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -34,6 +34,6 @@ set.
3434
.. literalinclude:: plot_classifier_comparison.py
3535
:lines: 23-
3636

37-
**Total running time of the example:** 11.36 seconds
38-
( 0 minutes 11.36 seconds)
37+
**Total running time of the example:** 11.31 seconds
38+
( 0 minutes 11.31 seconds)
3939

dev/_sources/datasets/index.txt

Lines changed: 24 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -266,3 +266,27 @@ features::
266266
.. include:: covtype.rst
267267

268268
.. include:: rcv1.rst
269+
270+
.. _boston_house_prices
271+
272+
.. include:: ../../sklearn/datasets/descr/boston_house_prices.rst
273+
274+
.. _breast_cancer
275+
276+
.. include:: ../../sklearn/datasets/descr/breast_cancer.rst
277+
278+
.. _diabetes
279+
280+
.. include:: ../../sklearn/datasets/descr/diabetes.rst
281+
282+
.. _digits
283+
284+
.. include:: ../../sklearn/datasets/descr/digits.rst
285+
286+
.. _iris
287+
288+
.. include:: ../../sklearn/datasets/descr/iris.rst
289+
290+
.. _linnerud
291+
292+
.. include:: ../../sklearn/datasets/descr/linnerud.rst

dev/auto_examples/classification/plot_classifier_comparison.html

Lines changed: 8 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -201,14 +201,13 @@
201201
<span class="kn">from</span> <span class="nn">sklearn.tree</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier"><span class="n">DecisionTreeClassifier</span></a>
202202
<span class="kn">from</span> <span class="nn">sklearn.ensemble</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier"><span class="n">RandomForestClassifier</span></a><span class="p">,</span> <a href="../../modules/generated/sklearn.ensemble.AdaBoostClassifier.html#sklearn.ensemble.AdaBoostClassifier"><span class="n">AdaBoostClassifier</span></a>
203203
<span class="kn">from</span> <span class="nn">sklearn.naive_bayes</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB"><span class="n">GaussianNB</span></a>
204-
<span class="kn">from</span> <span class="nn">sklearn.discriminant_analysis</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html#sklearn.discriminant_analysis.LinearDiscriminantAnalysis"><span class="n">LinearDiscriminantAnalysis</span></a>
205204
<span class="kn">from</span> <span class="nn">sklearn.discriminant_analysis</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.html#sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis"><span class="n">QuadraticDiscriminantAnalysis</span></a>
206205

207206
<span class="n">h</span> <span class="o">=</span> <span class="o">.</span><span class="mo">02</span> <span class="c"># step size in the mesh</span>
208207

209208
<span class="n">names</span> <span class="o">=</span> <span class="p">[</span><span class="s">&quot;Nearest Neighbors&quot;</span><span class="p">,</span> <span class="s">&quot;Linear SVM&quot;</span><span class="p">,</span> <span class="s">&quot;RBF SVM&quot;</span><span class="p">,</span> <span class="s">&quot;Gaussian Process&quot;</span><span class="p">,</span>
210209
<span class="s">&quot;Decision Tree&quot;</span><span class="p">,</span> <span class="s">&quot;Random Forest&quot;</span><span class="p">,</span> <span class="s">&quot;AdaBoost&quot;</span><span class="p">,</span> <span class="s">&quot;Naive Bayes&quot;</span><span class="p">,</span>
211-
<span class="s">&quot;Linear Discriminant Analysis&quot;</span><span class="p">,</span> <span class="s">&quot;Quadratic Discriminant Analysis&quot;</span><span class="p">]</span>
210+
<span class="s">&quot;QDA&quot;</span><span class="p">]</span>
212211

213212
<span class="n">classifiers</span> <span class="o">=</span> <span class="p">[</span>
214213
<a href="../../modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier"><span class="n">KNeighborsClassifier</span></a><span class="p">(</span><span class="mi">3</span><span class="p">),</span>
@@ -219,7 +218,6 @@
219218
<a href="../../modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier"><span class="n">RandomForestClassifier</span></a><span class="p">(</span><span class="n">max_depth</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">n_estimators</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">max_features</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
220219
<a href="../../modules/generated/sklearn.ensemble.AdaBoostClassifier.html#sklearn.ensemble.AdaBoostClassifier"><span class="n">AdaBoostClassifier</span></a><span class="p">(),</span>
221220
<a href="../../modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB"><span class="n">GaussianNB</span></a><span class="p">(),</span>
222-
<a href="../../modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html#sklearn.discriminant_analysis.LinearDiscriminantAnalysis"><span class="n">LinearDiscriminantAnalysis</span></a><span class="p">(),</span>
223221
<a href="../../modules/generated/sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.html#sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis"><span class="n">QuadraticDiscriminantAnalysis</span></a><span class="p">()]</span>
224222

225223
<span class="n">X</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.datasets.make_classification.html#sklearn.datasets.make_classification"><span class="n">make_classification</span></a><span class="p">(</span><span class="n">n_features</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">n_redundant</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">n_informative</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
@@ -236,7 +234,7 @@
236234
<span class="n">figure</span> <span class="o">=</span> <a href="http://matplotlib.org/api/figure_api.html#matplotlib.figure"><span class="n">plt</span><span class="o">.</span><span class="n">figure</span></a><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">27</span><span class="p">,</span> <span class="mi">9</span><span class="p">))</span>
237235
<span class="n">i</span> <span class="o">=</span> <span class="mi">1</span>
238236
<span class="c"># iterate over datasets</span>
239-
<span class="k">for</span> <span class="n">ds</span> <span class="ow">in</span> <span class="n">datasets</span><span class="p">:</span>
237+
<span class="k">for</span> <span class="n">ds_cnt</span><span class="p">,</span> <span class="n">ds</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">datasets</span><span class="p">):</span>
240238
<span class="c"># preprocess dataset, split into training and test part</span>
241239
<span class="n">X</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">ds</span>
242240
<span class="n">X</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler"><span class="n">StandardScaler</span></a><span class="p">()</span><span class="o">.</span><span class="n">fit_transform</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
@@ -252,6 +250,8 @@
252250
<span class="n">cm</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">cm</span><span class="o">.</span><span class="n">RdBu</span>
253251
<span class="n">cm_bright</span> <span class="o">=</span> <a href="http://matplotlib.org/api/colors_api.html#matplotlib.colors.ListedColormap"><span class="n">ListedColormap</span></a><span class="p">([</span><span class="s">&#39;#FF0000&#39;</span><span class="p">,</span> <span class="s">&#39;#0000FF&#39;</span><span class="p">])</span>
254252
<span class="n">ax</span> <span class="o">=</span> <a href="http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.subplot"><span class="n">plt</span><span class="o">.</span><span class="n">subplot</span></a><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">datasets</span><span class="p">),</span> <span class="nb">len</span><span class="p">(</span><span class="n">classifiers</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="n">i</span><span class="p">)</span>
253+
<span class="k">if</span> <span class="n">ds_cnt</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
254+
<span class="n">ax</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s">&quot;Input data&quot;</span><span class="p">)</span>
255255
<span class="c"># Plot the training points</span>
256256
<span class="n">ax</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">X_train</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">X_train</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">c</span><span class="o">=</span><span class="n">y_train</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="n">cm_bright</span><span class="p">)</span>
257257
<span class="c"># and testing points</span>
@@ -289,7 +289,8 @@
289289
<span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">(</span><span class="n">yy</span><span class="o">.</span><span class="n">min</span><span class="p">(),</span> <span class="n">yy</span><span class="o">.</span><span class="n">max</span><span class="p">())</span>
290290
<span class="n">ax</span><span class="o">.</span><span class="n">set_xticks</span><span class="p">(())</span>
291291
<span class="n">ax</span><span class="o">.</span><span class="n">set_yticks</span><span class="p">(())</span>
292-
<span class="n">ax</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="n">name</span><span class="p">)</span>
292+
<span class="k">if</span> <span class="n">ds_cnt</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span>
293+
<span class="n">ax</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="n">name</span><span class="p">)</span>
293294
<span class="n">ax</span><span class="o">.</span><span class="n">text</span><span class="p">(</span><span class="n">xx</span><span class="o">.</span><span class="n">max</span><span class="p">()</span> <span class="o">-</span> <span class="o">.</span><span class="mi">3</span><span class="p">,</span> <span class="n">yy</span><span class="o">.</span><span class="n">min</span><span class="p">()</span> <span class="o">+</span> <span class="o">.</span><span class="mi">3</span><span class="p">,</span> <span class="p">(</span><span class="s">&#39;</span><span class="si">%.2f</span><span class="s">&#39;</span> <span class="o">%</span> <span class="n">score</span><span class="p">)</span><span class="o">.</span><span class="n">lstrip</span><span class="p">(</span><span class="s">&#39;0&#39;</span><span class="p">),</span>
294295
<span class="n">size</span><span class="o">=</span><span class="mi">15</span><span class="p">,</span> <span class="n">horizontalalignment</span><span class="o">=</span><span class="s">&#39;right&#39;</span><span class="p">)</span>
295296
<span class="n">i</span> <span class="o">+=</span> <span class="mi">1</span>
@@ -298,8 +299,8 @@
298299
<a href="http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.show"><span class="n">plt</span><span class="o">.</span><span class="n">show</span></a><span class="p">()</span>
299300
</pre></div>
300301
</div>
301-
<p><strong>Total running time of the example:</strong> 11.36 seconds
302-
( 0 minutes 11.36 seconds)</p>
302+
<p><strong>Total running time of the example:</strong> 11.31 seconds
303+
( 0 minutes 11.31 seconds)</p>
303304
</div>
304305

305306

dev/auto_examples/ensemble/plot_partial_dependence.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -176,7 +176,7 @@
176176
(see <a class="reference internal" href="../../modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor.feature_importances_" title="sklearn.ensemble.GradientBoostingRegressor.feature_importances_"><tt class="xref py py-attr docutils literal"><span class="pre">feature_importances_</span></tt></a>).</p>
177177
<p>This example shows how to obtain partial dependence plots from a
178178
<a class="reference internal" href="../../modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor" title="sklearn.ensemble.GradientBoostingRegressor"><tt class="xref py py-class docutils literal"><span class="pre">GradientBoostingRegressor</span></tt></a> trained on the California
179-
housing dataset. The example is taken from <a class="reference internal" href="../../modules/ensemble.html#htf2009" id="id2">[HTF2009]</a>.</p>
179+
housing dataset. The example is taken from <a class="reference internal" href="#htf2009" id="id2">[HTF2009]</a>.</p>
180180
<p>The plot shows four one-way and one two-way partial dependence plots.
181181
The target variables for the one-way PDP are:
182182
median income (<cite>MedInc</cite>), avg. occupants per household (<cite>AvgOccup</cite>),

0 commit comments

Comments
 (0)