|
201 | 201 | <span class="kn">from</span> <span class="nn">sklearn.tree</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier"><span class="n">DecisionTreeClassifier</span></a>
|
202 | 202 | <span class="kn">from</span> <span class="nn">sklearn.ensemble</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier"><span class="n">RandomForestClassifier</span></a><span class="p">,</span> <a href="../../modules/generated/sklearn.ensemble.AdaBoostClassifier.html#sklearn.ensemble.AdaBoostClassifier"><span class="n">AdaBoostClassifier</span></a>
|
203 | 203 | <span class="kn">from</span> <span class="nn">sklearn.naive_bayes</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB"><span class="n">GaussianNB</span></a>
|
204 |
| -<span class="kn">from</span> <span class="nn">sklearn.discriminant_analysis</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html#sklearn.discriminant_analysis.LinearDiscriminantAnalysis"><span class="n">LinearDiscriminantAnalysis</span></a> |
205 | 204 | <span class="kn">from</span> <span class="nn">sklearn.discriminant_analysis</span> <span class="kn">import</span> <a href="../../modules/generated/sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.html#sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis"><span class="n">QuadraticDiscriminantAnalysis</span></a>
|
206 | 205 |
|
207 | 206 | <span class="n">h</span> <span class="o">=</span> <span class="o">.</span><span class="mo">02</span> <span class="c"># step size in the mesh</span>
|
208 | 207 |
|
209 | 208 | <span class="n">names</span> <span class="o">=</span> <span class="p">[</span><span class="s">"Nearest Neighbors"</span><span class="p">,</span> <span class="s">"Linear SVM"</span><span class="p">,</span> <span class="s">"RBF SVM"</span><span class="p">,</span> <span class="s">"Gaussian Process"</span><span class="p">,</span>
|
210 | 209 | <span class="s">"Decision Tree"</span><span class="p">,</span> <span class="s">"Random Forest"</span><span class="p">,</span> <span class="s">"AdaBoost"</span><span class="p">,</span> <span class="s">"Naive Bayes"</span><span class="p">,</span>
|
211 |
| - <span class="s">"Linear Discriminant Analysis"</span><span class="p">,</span> <span class="s">"Quadratic Discriminant Analysis"</span><span class="p">]</span> |
| 210 | + <span class="s">"QDA"</span><span class="p">]</span> |
212 | 211 |
|
213 | 212 | <span class="n">classifiers</span> <span class="o">=</span> <span class="p">[</span>
|
214 | 213 | <a href="../../modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier"><span class="n">KNeighborsClassifier</span></a><span class="p">(</span><span class="mi">3</span><span class="p">),</span>
|
|
219 | 218 | <a href="../../modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier"><span class="n">RandomForestClassifier</span></a><span class="p">(</span><span class="n">max_depth</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">n_estimators</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">max_features</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
|
220 | 219 | <a href="../../modules/generated/sklearn.ensemble.AdaBoostClassifier.html#sklearn.ensemble.AdaBoostClassifier"><span class="n">AdaBoostClassifier</span></a><span class="p">(),</span>
|
221 | 220 | <a href="../../modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB"><span class="n">GaussianNB</span></a><span class="p">(),</span>
|
222 |
| - <a href="../../modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html#sklearn.discriminant_analysis.LinearDiscriminantAnalysis"><span class="n">LinearDiscriminantAnalysis</span></a><span class="p">(),</span> |
223 | 221 | <a href="../../modules/generated/sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis.html#sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis"><span class="n">QuadraticDiscriminantAnalysis</span></a><span class="p">()]</span>
|
224 | 222 |
|
225 | 223 | <span class="n">X</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.datasets.make_classification.html#sklearn.datasets.make_classification"><span class="n">make_classification</span></a><span class="p">(</span><span class="n">n_features</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">n_redundant</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">n_informative</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span>
|
|
236 | 234 | <span class="n">figure</span> <span class="o">=</span> <a href="http://matplotlib.org/api/figure_api.html#matplotlib.figure"><span class="n">plt</span><span class="o">.</span><span class="n">figure</span></a><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">27</span><span class="p">,</span> <span class="mi">9</span><span class="p">))</span>
|
237 | 235 | <span class="n">i</span> <span class="o">=</span> <span class="mi">1</span>
|
238 | 236 | <span class="c"># iterate over datasets</span>
|
239 |
| -<span class="k">for</span> <span class="n">ds</span> <span class="ow">in</span> <span class="n">datasets</span><span class="p">:</span> |
| 237 | +<span class="k">for</span> <span class="n">ds_cnt</span><span class="p">,</span> <span class="n">ds</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">datasets</span><span class="p">):</span> |
240 | 238 | <span class="c"># preprocess dataset, split into training and test part</span>
|
241 | 239 | <span class="n">X</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="n">ds</span>
|
242 | 240 | <span class="n">X</span> <span class="o">=</span> <a href="../../modules/generated/sklearn.preprocessing.StandardScaler.html#sklearn.preprocessing.StandardScaler"><span class="n">StandardScaler</span></a><span class="p">()</span><span class="o">.</span><span class="n">fit_transform</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
|
|
252 | 250 | <span class="n">cm</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">cm</span><span class="o">.</span><span class="n">RdBu</span>
|
253 | 251 | <span class="n">cm_bright</span> <span class="o">=</span> <a href="http://matplotlib.org/api/colors_api.html#matplotlib.colors.ListedColormap"><span class="n">ListedColormap</span></a><span class="p">([</span><span class="s">'#FF0000'</span><span class="p">,</span> <span class="s">'#0000FF'</span><span class="p">])</span>
|
254 | 252 | <span class="n">ax</span> <span class="o">=</span> <a href="http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.subplot"><span class="n">plt</span><span class="o">.</span><span class="n">subplot</span></a><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">datasets</span><span class="p">),</span> <span class="nb">len</span><span class="p">(</span><span class="n">classifiers</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="n">i</span><span class="p">)</span>
|
| 253 | + <span class="k">if</span> <span class="n">ds_cnt</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span> |
| 254 | + <span class="n">ax</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s">"Input data"</span><span class="p">)</span> |
255 | 255 | <span class="c"># Plot the training points</span>
|
256 | 256 | <span class="n">ax</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">X_train</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">X_train</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">c</span><span class="o">=</span><span class="n">y_train</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="n">cm_bright</span><span class="p">)</span>
|
257 | 257 | <span class="c"># and testing points</span>
|
|
289 | 289 | <span class="n">ax</span><span class="o">.</span><span class="n">set_ylim</span><span class="p">(</span><span class="n">yy</span><span class="o">.</span><span class="n">min</span><span class="p">(),</span> <span class="n">yy</span><span class="o">.</span><span class="n">max</span><span class="p">())</span>
|
290 | 290 | <span class="n">ax</span><span class="o">.</span><span class="n">set_xticks</span><span class="p">(())</span>
|
291 | 291 | <span class="n">ax</span><span class="o">.</span><span class="n">set_yticks</span><span class="p">(())</span>
|
292 |
| - <span class="n">ax</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="n">name</span><span class="p">)</span> |
| 292 | + <span class="k">if</span> <span class="n">ds_cnt</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span> |
| 293 | + <span class="n">ax</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="n">name</span><span class="p">)</span> |
293 | 294 | <span class="n">ax</span><span class="o">.</span><span class="n">text</span><span class="p">(</span><span class="n">xx</span><span class="o">.</span><span class="n">max</span><span class="p">()</span> <span class="o">-</span> <span class="o">.</span><span class="mi">3</span><span class="p">,</span> <span class="n">yy</span><span class="o">.</span><span class="n">min</span><span class="p">()</span> <span class="o">+</span> <span class="o">.</span><span class="mi">3</span><span class="p">,</span> <span class="p">(</span><span class="s">'</span><span class="si">%.2f</span><span class="s">'</span> <span class="o">%</span> <span class="n">score</span><span class="p">)</span><span class="o">.</span><span class="n">lstrip</span><span class="p">(</span><span class="s">'0'</span><span class="p">),</span>
|
294 | 295 | <span class="n">size</span><span class="o">=</span><span class="mi">15</span><span class="p">,</span> <span class="n">horizontalalignment</span><span class="o">=</span><span class="s">'right'</span><span class="p">)</span>
|
295 | 296 | <span class="n">i</span> <span class="o">+=</span> <span class="mi">1</span>
|
|
298 | 299 | <a href="http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.show"><span class="n">plt</span><span class="o">.</span><span class="n">show</span></a><span class="p">()</span>
|
299 | 300 | </pre></div>
|
300 | 301 | </div>
|
301 |
| -<p><strong>Total running time of the example:</strong> 11.36 seconds |
302 |
| -( 0 minutes 11.36 seconds)</p> |
| 302 | +<p><strong>Total running time of the example:</strong> 11.31 seconds |
| 303 | +( 0 minutes 11.31 seconds)</p> |
303 | 304 | </div>
|
304 | 305 |
|
305 | 306 |
|
|
0 commit comments