|
45 | 45 |
|
46 | 46 | ## 解法
|
47 | 47 |
|
48 |
| -### 方法一 |
| 48 | +### 方法一:二维前缀和 |
| 49 | + |
| 50 | +本题属于二维前缀和模板题。 |
| 51 | + |
| 52 | +我们定义 $s[i][j]$ 表示矩阵 $mat$ 前 $i$ 行,前 $j$ 列的元素和。那么 $s[i][j]$ 的计算公式为: |
| 53 | + |
| 54 | +$$ |
| 55 | +s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + mat[i-1][j-1] |
| 56 | +$$ |
| 57 | + |
| 58 | +这样我们就可以通过 $s$ 数组快速计算出任意矩形区域的元素和。 |
| 59 | + |
| 60 | +对于一个左上角坐标为 $(x_1, y_1)$,右下角坐标为 $(x_2, y_2)$ 的矩形区域的元素和,我们可以通过 $s$ 数组计算出来: |
| 61 | + |
| 62 | +$$ |
| 63 | +s[x_2+1][y_2+1] - s[x_1][y_2+1] - s[x_2+1][y_1] + s[x_1][y_1] |
| 64 | +$$ |
| 65 | + |
| 66 | +时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$ 和 $n$ 分别是矩阵的行数和列数。 |
49 | 67 |
|
50 | 68 | <!-- tabs:start -->
|
51 | 69 |
|
52 | 70 | ```python
|
53 | 71 | class Solution:
|
54 | 72 | def matrixBlockSum(self, mat: List[List[int]], k: int) -> List[List[int]]:
|
55 | 73 | m, n = len(mat), len(mat[0])
|
56 |
| - pre = [[0] * (n + 1) for _ in range(m + 1)] |
57 |
| - for i in range(1, m + 1): |
58 |
| - for j in range(1, n + 1): |
59 |
| - pre[i][j] = ( |
60 |
| - pre[i - 1][j] |
61 |
| - + pre[i][j - 1] |
62 |
| - - pre[i - 1][j - 1] |
63 |
| - + mat[i - 1][j - 1] |
64 |
| - ) |
65 |
| - |
66 |
| - def get(i, j): |
67 |
| - i = max(min(m, i), 0) |
68 |
| - j = max(min(n, j), 0) |
69 |
| - return pre[i][j] |
70 |
| - |
| 74 | + s = [[0] * (n + 1) for _ in range(m + 1)] |
| 75 | + for i, row in enumerate(mat, 1): |
| 76 | + for j, x in enumerate(row, 1): |
| 77 | + s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + x |
71 | 78 | ans = [[0] * n for _ in range(m)]
|
72 | 79 | for i in range(m):
|
73 | 80 | for j in range(n):
|
| 81 | + x1, y1 = max(i - k, 0), max(j - k, 0) |
| 82 | + x2, y2 = min(m - 1, i + k), min(n - 1, j + k) |
74 | 83 | ans[i][j] = (
|
75 |
| - get(i + k + 1, j + k + 1) |
76 |
| - - get(i + k + 1, j - k) |
77 |
| - - get(i - k, j + k + 1) |
78 |
| - + get(i - k, j - k) |
| 84 | + s[x2 + 1][y2 + 1] - s[x1][y2 + 1] - s[x2 + 1][y1] + s[x1][y1] |
79 | 85 | )
|
80 | 86 | return ans
|
81 | 87 | ```
|
82 | 88 |
|
83 | 89 | ```java
|
84 | 90 | class Solution {
|
85 |
| - private int[][] pre; |
86 |
| - private int m; |
87 |
| - private int n; |
88 | 91 | public int[][] matrixBlockSum(int[][] mat, int k) {
|
89 |
| - int m = mat.length, n = mat[0].length; |
90 |
| - int[][] pre = new int[m + 1][n + 1]; |
91 |
| - for (int i = 1; i < m + 1; ++i) { |
92 |
| - for (int j = 1; j < n + 1; ++j) { |
93 |
| - pre[i][j] = pre[i - 1][j] + pre[i][j - 1] + -pre[i - 1][j - 1] + mat[i - 1][j - 1]; |
| 92 | + int m = mat.length; |
| 93 | + int n = mat[0].length; |
| 94 | + int[][] s = new int[m + 1][n + 1]; |
| 95 | + for (int i = 0; i < m; ++i) { |
| 96 | + for (int j = 0; j < n; ++j) { |
| 97 | + s[i + 1][j + 1] = s[i][j + 1] + s[i + 1][j] - s[i][j] + mat[i][j]; |
94 | 98 | }
|
95 | 99 | }
|
96 |
| - this.pre = pre; |
97 |
| - this.m = m; |
98 |
| - this.n = n; |
| 100 | + |
99 | 101 | int[][] ans = new int[m][n];
|
100 | 102 | for (int i = 0; i < m; ++i) {
|
101 | 103 | for (int j = 0; j < n; ++j) {
|
102 |
| - ans[i][j] = get(i + k + 1, j + k + 1) - get(i + k + 1, j - k) |
103 |
| - - get(i - k, j + k + 1) + get(i - k, j - k); |
| 104 | + int x1 = Math.max(i - k, 0); |
| 105 | + int y1 = Math.max(j - k, 0); |
| 106 | + int x2 = Math.min(m - 1, i + k); |
| 107 | + int y2 = Math.min(n - 1, j + k); |
| 108 | + ans[i][j] = s[x2 + 1][y2 + 1] - s[x1][y2 + 1] - s[x2 + 1][y1] + s[x1][y1]; |
104 | 109 | }
|
105 | 110 | }
|
106 | 111 | return ans;
|
107 | 112 | }
|
108 |
| - |
109 |
| - private int get(int i, int j) { |
110 |
| - i = Math.max(Math.min(m, i), 0); |
111 |
| - j = Math.max(Math.min(n, j), 0); |
112 |
| - return pre[i][j]; |
113 |
| - } |
114 | 113 | }
|
115 | 114 | ```
|
116 | 115 |
|
117 | 116 | ```cpp
|
118 | 117 | class Solution {
|
119 | 118 | public:
|
120 | 119 | vector<vector<int>> matrixBlockSum(vector<vector<int>>& mat, int k) {
|
121 |
| - int m = mat.size(), n = mat[0].size(); |
122 |
| - vector<vector<int>> pre(m + 1, vector<int>(n + 1)); |
123 |
| - for (int i = 1; i < m + 1; ++i) { |
124 |
| - for (int j = 1; j < n + 1; ++j) { |
125 |
| - pre[i][j] = pre[i - 1][j] + pre[i][j - 1] + -pre[i - 1][j - 1] + mat[i - 1][j - 1]; |
| 120 | + int m = mat.size(); |
| 121 | + int n = mat[0].size(); |
| 122 | + |
| 123 | + vector<vector<int>> s(m + 1, vector<int>(n + 1)); |
| 124 | + for (int i = 0; i < m; ++i) { |
| 125 | + for (int j = 0; j < n; ++j) { |
| 126 | + s[i + 1][j + 1] = s[i][j + 1] + s[i + 1][j] - s[i][j] + mat[i][j]; |
126 | 127 | }
|
127 | 128 | }
|
| 129 | + |
128 | 130 | vector<vector<int>> ans(m, vector<int>(n));
|
129 | 131 | for (int i = 0; i < m; ++i) {
|
130 | 132 | for (int j = 0; j < n; ++j) {
|
131 |
| - ans[i][j] = get(i + k + 1, j + k + 1, m, n, pre) - get(i + k + 1, j - k, m, n, pre) - get(i - k, j + k + 1, m, n, pre) + get(i - k, j - k, m, n, pre); |
| 133 | + int x1 = max(i - k, 0); |
| 134 | + int y1 = max(j - k, 0); |
| 135 | + int x2 = min(m - 1, i + k); |
| 136 | + int y2 = min(n - 1, j + k); |
| 137 | + ans[i][j] = s[x2 + 1][y2 + 1] - s[x1][y2 + 1] - s[x2 + 1][y1] + s[x1][y1]; |
132 | 138 | }
|
133 | 139 | }
|
134 | 140 | return ans;
|
135 | 141 | }
|
136 |
| - |
137 |
| - int get(int i, int j, int m, int n, vector<vector<int>>& pre) { |
138 |
| - i = max(min(m, i), 0); |
139 |
| - j = max(min(n, j), 0); |
140 |
| - return pre[i][j]; |
141 |
| - } |
142 | 142 | };
|
143 | 143 | ```
|
144 | 144 |
|
145 | 145 | ```go
|
146 | 146 | func matrixBlockSum(mat [][]int, k int) [][]int {
|
147 | 147 | m, n := len(mat), len(mat[0])
|
148 |
| - pre := make([][]int, m+1) |
149 |
| - for i := 0; i < m+1; i++ { |
150 |
| - pre[i] = make([]int, n+1) |
| 148 | + s := make([][]int, m+1) |
| 149 | + for i := range s { |
| 150 | + s[i] = make([]int, n+1) |
151 | 151 | }
|
152 |
| - for i := 1; i < m+1; i++ { |
153 |
| - for j := 1; j < n+1; j++ { |
154 |
| - pre[i][j] = pre[i-1][j] + pre[i][j-1] + -pre[i-1][j-1] + mat[i-1][j-1] |
| 152 | + for i, row := range mat { |
| 153 | + for j, x := range row { |
| 154 | + s[i+1][j+1] = s[i][j+1] + s[i+1][j] - s[i][j] + x |
155 | 155 | }
|
156 | 156 | }
|
157 | 157 |
|
158 |
| - get := func(i, j int) int { |
159 |
| - i = max(min(m, i), 0) |
160 |
| - j = max(min(n, j), 0) |
161 |
| - return pre[i][j] |
| 158 | + ans := make([][]int, m) |
| 159 | + for i := range ans { |
| 160 | + ans[i] = make([]int, n) |
162 | 161 | }
|
163 | 162 |
|
164 |
| - ans := make([][]int, m) |
165 | 163 | for i := 0; i < m; i++ {
|
166 |
| - ans[i] = make([]int, n) |
167 | 164 | for j := 0; j < n; j++ {
|
168 |
| - ans[i][j] = get(i+k+1, j+k+1) - get(i+k+1, j-k) - get(i-k, j+k+1) + get(i-k, j-k) |
| 165 | + x1 := max(i-k, 0) |
| 166 | + y1 := max(j-k, 0) |
| 167 | + x2 := min(m-1, i+k) |
| 168 | + y2 := min(n-1, j+k) |
| 169 | + ans[i][j] = s[x2+1][y2+1] - s[x1][y2+1] - s[x2+1][y1] + s[x1][y1] |
169 | 170 | }
|
170 | 171 | }
|
| 172 | +
|
171 | 173 | return ans
|
172 | 174 | }
|
173 | 175 | ```
|
174 | 176 |
|
| 177 | +```ts |
| 178 | +function matrixBlockSum(mat: number[][], k: number): number[][] { |
| 179 | + const m: number = mat.length; |
| 180 | + const n: number = mat[0].length; |
| 181 | + |
| 182 | + const s: number[][] = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0)); |
| 183 | + for (let i = 0; i < m; i++) { |
| 184 | + for (let j = 0; j < n; j++) { |
| 185 | + s[i + 1][j + 1] = s[i][j + 1] + s[i + 1][j] - s[i][j] + mat[i][j]; |
| 186 | + } |
| 187 | + } |
| 188 | + |
| 189 | + const ans: number[][] = Array.from({ length: m }, () => Array(n).fill(0)); |
| 190 | + for (let i = 0; i < m; i++) { |
| 191 | + for (let j = 0; j < n; j++) { |
| 192 | + const x1: number = Math.max(i - k, 0); |
| 193 | + const y1: number = Math.max(j - k, 0); |
| 194 | + const x2: number = Math.min(m - 1, i + k); |
| 195 | + const y2: number = Math.min(n - 1, j + k); |
| 196 | + ans[i][j] = s[x2 + 1][y2 + 1] - s[x1][y2 + 1] - s[x2 + 1][y1] + s[x1][y1]; |
| 197 | + } |
| 198 | + } |
| 199 | + |
| 200 | + return ans; |
| 201 | +} |
| 202 | +``` |
| 203 | + |
175 | 204 | <!-- tabs:end -->
|
176 | 205 |
|
177 | 206 | <!-- end -->
|
0 commit comments