|
28 | 28 |
|
29 | 29 | ## 解法
|
30 | 30 |
|
| 31 | +**方法一:排序** |
| 32 | + |
| 33 | +我们可以直接对数组 `arr` 按从小到大排序,然后取前 $k$ 个数即可。 |
| 34 | + |
| 35 | +时间复杂度 $O(n \times \log n)$,空间复杂度 $O(\log n)$。其中 $n$ 为数组 `arr` 的长度。 |
| 36 | + |
| 37 | +**方法二:优先队列(大根堆)** |
| 38 | + |
| 39 | +我们可以用优先队列(大根堆)维护最小的 $k$ 个数。 |
| 40 | + |
| 41 | +遍历数组 `arr`,对于当前遍历到的数 $x$,我们先将其加入优先队列中,然后判断优先队列的大小是否超过 $k$,如果超过了,就将堆顶元素弹出。最后将优先队列中的数存入数组并返回即可。 |
| 42 | + |
| 43 | +时间复杂度 $O(n \times \log k)$,空间复杂度 $O(k)$。其中 $n$ 为数组 `arr` 的长度。 |
| 44 | + |
| 45 | +**方法三:快排思想** |
| 46 | + |
| 47 | +我们可以利用快速排序的思想,每次划分后判断划分点的位置是否为 $k$,如果是,就直接返回划分点左边的数即可,否则根据划分点的位置决定下一步划分的区间。 |
| 48 | + |
| 49 | +时间复杂度 $O(n)$,空间复杂度 $O(\log n)$。其中 $n$ 为数组 `arr` 的长度。 |
| 50 | + |
31 | 51 | <!-- tabs:start -->
|
32 | 52 |
|
33 | 53 | ### **Python3**
|
34 | 54 |
|
35 | 55 | ```python
|
36 | 56 | class Solution:
|
37 | 57 | def getLeastNumbers(self, arr: List[int], k: int) -> List[int]:
|
38 |
| - if k == 0: |
39 |
| - return [] |
40 |
| - heap = [] |
41 |
| - for e in arr: |
42 |
| - heappush(heap, e) |
43 |
| - return nsmallest(k, heap) |
| 58 | + arr.sort() |
| 59 | + return arr[:k] |
| 60 | +``` |
| 61 | + |
| 62 | +```python |
| 63 | +class Solution: |
| 64 | + def getLeastNumbers(self, arr: List[int], k: int) -> List[int]: |
| 65 | + h = [] |
| 66 | + for x in arr: |
| 67 | + heappush(h, -x) |
| 68 | + if len(h) > k: |
| 69 | + heappop(h) |
| 70 | + return [-x for x in h] |
| 71 | +``` |
| 72 | + |
| 73 | +```python |
| 74 | +class Solution: |
| 75 | + def getLeastNumbers(self, arr: List[int], k: int) -> List[int]: |
| 76 | + def quick_sort(l, r): |
| 77 | + i, j = l, r |
| 78 | + while i < j: |
| 79 | + while i < j and arr[j] >= arr[l]: |
| 80 | + j -= 1 |
| 81 | + while i < j and arr[i] <= arr[l]: |
| 82 | + i += 1 |
| 83 | + arr[i], arr[j] = arr[j], arr[i] |
| 84 | + arr[i], arr[l] = arr[l], arr[i] |
| 85 | + if k < i: |
| 86 | + return quick_sort(l, i - 1) |
| 87 | + if k > i: |
| 88 | + return quick_sort(i + 1, r) |
| 89 | + return arr[:k] |
| 90 | + |
| 91 | + n = len(arr) |
| 92 | + return arr if k == n else quick_sort(0, n - 1) |
44 | 93 | ```
|
45 | 94 |
|
46 | 95 | ### **Java**
|
47 | 96 |
|
48 | 97 | ```java
|
49 | 98 | class Solution {
|
50 | 99 | public int[] getLeastNumbers(int[] arr, int k) {
|
51 |
| - if (k == 0) { |
52 |
| - return new int[] {}; |
| 100 | + Arrays.sort(arr); |
| 101 | + int[] ans = new int[k]; |
| 102 | + for (int i = 0; i < k; ++i) { |
| 103 | + ans[i] = arr[i]; |
53 | 104 | }
|
54 |
| - PriorityQueue<Integer> bigRoot = new PriorityQueue<>(k, Collections.reverseOrder()); |
55 |
| - for (int e : arr) { |
56 |
| - if (bigRoot.size() < k) { |
57 |
| - bigRoot.offer(e); |
58 |
| - } else if (e < bigRoot.peek()) { |
59 |
| - bigRoot.poll(); |
60 |
| - bigRoot.offer(e); |
| 105 | + return ans; |
| 106 | + } |
| 107 | +} |
| 108 | +``` |
| 109 | + |
| 110 | +```java |
| 111 | +class Solution { |
| 112 | + public int[] getLeastNumbers(int[] arr, int k) { |
| 113 | + PriorityQueue<Integer> q = new PriorityQueue<>((a, b) -> b - a); |
| 114 | + for (int x : arr) { |
| 115 | + q.offer(x); |
| 116 | + if (q.size() > k) { |
| 117 | + q.poll(); |
| 118 | + } |
| 119 | + } |
| 120 | + int[] ans = new int[k]; |
| 121 | + for (int i = 0; i < k; ++i) { |
| 122 | + ans[i] = q.poll(); |
| 123 | + } |
| 124 | + return ans; |
| 125 | + } |
| 126 | +} |
| 127 | +``` |
| 128 | + |
| 129 | +```java |
| 130 | +class Solution { |
| 131 | + private int[] arr; |
| 132 | + private int k; |
| 133 | + |
| 134 | + public int[] getLeastNumbers(int[] arr, int k) { |
| 135 | + int n = arr.length; |
| 136 | + this.arr = arr; |
| 137 | + this.k = k; |
| 138 | + return k == n ? arr : quickSort(0, n - 1); |
| 139 | + } |
| 140 | + |
| 141 | + private int[] quickSort(int l, int r) { |
| 142 | + int i = l, j = r; |
| 143 | + while (i < j) { |
| 144 | + while (i < j && arr[j] >= arr[l]) { |
| 145 | + --j; |
| 146 | + } |
| 147 | + while (i < j && arr[i] <= arr[l]) { |
| 148 | + ++i; |
| 149 | + } |
| 150 | + swap(i, j); |
| 151 | + } |
| 152 | + swap(i, l); |
| 153 | + if (k < i) { |
| 154 | + return quickSort(l, i - 1); |
| 155 | + } |
| 156 | + if (k > i) { |
| 157 | + return quickSort(i + 1, r); |
| 158 | + } |
| 159 | + return Arrays.copyOf(arr, k); |
| 160 | + } |
| 161 | + |
| 162 | + private void swap(int i, int j) { |
| 163 | + int t = arr[i]; |
| 164 | + arr[i] = arr[j]; |
| 165 | + arr[j] = t; |
| 166 | + } |
| 167 | +} |
| 168 | +``` |
| 169 | + |
| 170 | +### **C++** |
| 171 | + |
| 172 | +```cpp |
| 173 | +class Solution { |
| 174 | +public: |
| 175 | + vector<int> getLeastNumbers(vector<int>& arr, int k) { |
| 176 | + sort(arr.begin(), arr.end()); |
| 177 | + return vector<int>(arr.begin(), arr.begin() + k); |
| 178 | + } |
| 179 | +}; |
| 180 | +``` |
| 181 | +
|
| 182 | +```cpp |
| 183 | +class Solution { |
| 184 | +public: |
| 185 | + vector<int> getLeastNumbers(vector<int>& arr, int k) { |
| 186 | + priority_queue<int> q; |
| 187 | + for (int& x : arr) { |
| 188 | + q.push(x); |
| 189 | + if (q.size() > k) { |
| 190 | + q.pop(); |
61 | 191 | }
|
62 | 192 | }
|
63 |
| - int[] res = new int[k]; |
| 193 | + vector<int> ans(k); |
64 | 194 | for (int i = 0; i < k; ++i) {
|
65 |
| - res[i] = bigRoot.poll(); |
| 195 | + ans[i] = q.top(); |
| 196 | + q.pop(); |
66 | 197 | }
|
67 |
| - return res; |
| 198 | + return ans; |
68 | 199 | }
|
| 200 | +}; |
| 201 | +``` |
| 202 | + |
| 203 | +```cpp |
| 204 | +class Solution { |
| 205 | +public: |
| 206 | + vector<int> getLeastNumbers(vector<int>& arr, int k) { |
| 207 | + int n = arr.size(); |
| 208 | + function<vector<int>(int, int)> quickSort = [&](int l, int r) -> vector<int> { |
| 209 | + int i = l, j = r; |
| 210 | + while (i < j) { |
| 211 | + while (i < j && arr[j] >= arr[l]) { |
| 212 | + --j; |
| 213 | + } |
| 214 | + while (i < j && arr[i] <= arr[l]) { |
| 215 | + ++i; |
| 216 | + } |
| 217 | + swap(arr[i], arr[j]); |
| 218 | + } |
| 219 | + swap(arr[i], arr[l]); |
| 220 | + if (k < i) { |
| 221 | + return quickSort(l, i - 1); |
| 222 | + } |
| 223 | + if (k > i) { |
| 224 | + return quickSort(i + 1, r); |
| 225 | + } |
| 226 | + return vector<int>(arr.begin(), arr.begin() + k); |
| 227 | + }; |
| 228 | + return k == n ? arr : quickSort(0, n - 1); |
| 229 | + } |
| 230 | +}; |
| 231 | +``` |
| 232 | +
|
| 233 | +### **Go** |
| 234 | +
|
| 235 | +```go |
| 236 | +func getLeastNumbers(arr []int, k int) []int { |
| 237 | + sort.Ints(arr) |
| 238 | + return arr[:k] |
| 239 | +} |
| 240 | +``` |
| 241 | + |
| 242 | +```go |
| 243 | +func getLeastNumbers(arr []int, k int) (ans []int) { |
| 244 | + q := hp{} |
| 245 | + for _, x := range arr { |
| 246 | + heap.Push(&q, x) |
| 247 | + if q.Len() > k { |
| 248 | + heap.Pop(&q) |
| 249 | + } |
| 250 | + } |
| 251 | + for i := 0; i < k; i++ { |
| 252 | + ans = append(ans, heap.Pop(&q).(int)) |
| 253 | + } |
| 254 | + return |
| 255 | +} |
| 256 | + |
| 257 | +type hp struct{ sort.IntSlice } |
| 258 | + |
| 259 | +func (h hp) Less(i, j int) bool { return h.IntSlice[i] > h.IntSlice[j] } |
| 260 | +func (h *hp) Push(v interface{}) { h.IntSlice = append(h.IntSlice, v.(int)) } |
| 261 | +func (h *hp) Pop() interface{} { |
| 262 | + a := h.IntSlice |
| 263 | + v := a[len(a)-1] |
| 264 | + h.IntSlice = a[:len(a)-1] |
| 265 | + return v |
| 266 | +} |
| 267 | +func (h *hp) push(v int) { heap.Push(h, v) } |
| 268 | +func (h *hp) pop() int { return heap.Pop(h).(int) } |
| 269 | +``` |
| 270 | + |
| 271 | +```go |
| 272 | +func getLeastNumbers(arr []int, k int) []int { |
| 273 | + n := len(arr) |
| 274 | + if k == n { |
| 275 | + return arr |
| 276 | + } |
| 277 | + var quickSort func(l, r int) []int |
| 278 | + quickSort = func(l, r int) []int { |
| 279 | + i, j := l, r |
| 280 | + for i < j { |
| 281 | + for i < j && arr[j] >= arr[l] { |
| 282 | + j-- |
| 283 | + } |
| 284 | + for i < j && arr[i] <= arr[l] { |
| 285 | + i++ |
| 286 | + } |
| 287 | + arr[i], arr[j] = arr[j], arr[i] |
| 288 | + } |
| 289 | + arr[i], arr[l] = arr[l], arr[i] |
| 290 | + if k < i { |
| 291 | + return quickSort(l, i-1) |
| 292 | + } |
| 293 | + if k > i { |
| 294 | + return quickSort(i+1, r) |
| 295 | + } |
| 296 | + return arr[:k] |
| 297 | + } |
| 298 | + return quickSort(0, n-1) |
69 | 299 | }
|
70 | 300 | ```
|
71 | 301 |
|
@@ -112,54 +342,6 @@ var getLeastNumbers = function (arr, k) {
|
112 | 342 | };
|
113 | 343 | ```
|
114 | 344 |
|
115 |
| -### **C++** |
116 |
| - |
117 |
| -```cpp |
118 |
| -class Solution { |
119 |
| -public: |
120 |
| - int partition(vector<int>& arr, int begin, int end) { |
121 |
| - int l = begin; |
122 |
| - int r = end; |
123 |
| - int povit = arr[begin]; |
124 |
| - |
125 |
| - while (l < r) { |
126 |
| - // 从右边开始,找到第一个小于povit的数字(用于交换) |
127 |
| - while (l < r && arr[r] >= povit) { r--; } |
128 |
| - while (l < r && arr[l] <= povit) { l++; } |
129 |
| - if (l < r) { swap(arr[l], arr[r]); } |
130 |
| - } |
131 |
| - |
132 |
| - swap(arr[begin], arr[l]); |
133 |
| - return l; |
134 |
| - } |
135 |
| - |
136 |
| - void partSort(vector<int>& arr, int begin, int end, int target) { |
137 |
| - if (begin >= end) { |
138 |
| - return; |
139 |
| - } |
140 |
| - |
141 |
| - // 思路类似快排,这样做比堆排序时间复杂度低 |
142 |
| - // C++中,stl提供partial_sort()方法,就是这种实现方式 |
143 |
| - int mid = partition(arr, begin, end); |
144 |
| - if (mid == target) { |
145 |
| - return; |
146 |
| - } else if (target < mid) { |
147 |
| - partSort(arr, begin, mid - 1, target); |
148 |
| - } else { |
149 |
| - partSort(arr, mid + 1, end, target); |
150 |
| - } |
151 |
| - |
152 |
| - return; |
153 |
| - } |
154 |
| - |
155 |
| - vector<int> getLeastNumbers(vector<int>& arr, int k) { |
156 |
| - partSort(arr, 0, arr.size() - 1, k - 1); |
157 |
| - vector<int> ret(arr.begin(), arr.begin() + k); |
158 |
| - return ret; |
159 |
| - } |
160 |
| -}; |
161 |
| -``` |
162 |
| - |
163 | 345 | ### **TypeScript**
|
164 | 346 |
|
165 | 347 | ```ts
|
|
0 commit comments