|
| 1 | +# [2950. Number of Divisible Substrings](https://leetcode.cn/problems/number-of-divisible-substrings) |
| 2 | + |
| 3 | +[English Version](/solution/2900-2999/2950.Number%20of%20Divisible%20Substrings/README_EN.md) |
| 4 | + |
| 5 | +## 题目描述 |
| 6 | + |
| 7 | +<!-- 这里写题目描述 --> |
| 8 | + |
| 9 | +<p>Each character of the English alphabet has been mapped to a digit as shown below.</p> |
| 10 | + |
| 11 | +<p><img alt="" src="https://assets.leetcode.com/uploads/2023/11/28/old_phone_digits.png" style="padding: 10px; width: 200px; height: 200px;" /></p> |
| 12 | + |
| 13 | +<p>A string is <strong>divisible</strong> if the sum of the mapped values of its characters is divisible by its length.</p> |
| 14 | + |
| 15 | +<p>Given a string <code>s</code>, return <em>the number of <strong>divisible substrings</strong> of</em> <code>s</code>.</p> |
| 16 | + |
| 17 | +<p>A <strong>substring</strong> is a contiguous non-empty sequence of characters within a string.</p> |
| 18 | + |
| 19 | +<p> </p> |
| 20 | +<p><strong class="example">Example 1:</strong></p> |
| 21 | + |
| 22 | +<table border="1" cellspacing="3" style="border-collapse: separate; text-align: center;"> |
| 23 | + <tbody> |
| 24 | + <tr> |
| 25 | + <th style="padding: 5px; border: 1px solid black;">Substring</th> |
| 26 | + <th style="padding: 5px; border: 1px solid black;">Mapped</th> |
| 27 | + <th style="padding: 5px; border: 1px solid black;">Sum</th> |
| 28 | + <th style="padding: 5px; border: 1px solid black;">Length</th> |
| 29 | + <th style="padding: 5px; border: 1px solid black;">Divisible?</th> |
| 30 | + </tr> |
| 31 | + <tr> |
| 32 | + <td style="padding: 5px; border: 1px solid black;">a</td> |
| 33 | + <td style="padding: 5px; border: 1px solid black;">1</td> |
| 34 | + <td style="padding: 5px; border: 1px solid black;">1</td> |
| 35 | + <td style="padding: 5px; border: 1px solid black;">1</td> |
| 36 | + <td style="padding: 5px; border: 1px solid black;">Yes</td> |
| 37 | + </tr> |
| 38 | + <tr> |
| 39 | + <td style="padding: 5px; border: 1px solid black;">s</td> |
| 40 | + <td style="padding: 5px; border: 1px solid black;">7</td> |
| 41 | + <td style="padding: 5px; border: 1px solid black;">7</td> |
| 42 | + <td style="padding: 5px; border: 1px solid black;">1</td> |
| 43 | + <td style="padding: 5px; border: 1px solid black;">Yes</td> |
| 44 | + </tr> |
| 45 | + <tr> |
| 46 | + <td style="padding: 5px; border: 1px solid black;">d</td> |
| 47 | + <td style="padding: 5px; border: 1px solid black;">2</td> |
| 48 | + <td style="padding: 5px; border: 1px solid black;">2</td> |
| 49 | + <td style="padding: 5px; border: 1px solid black;">1</td> |
| 50 | + <td style="padding: 5px; border: 1px solid black;">Yes</td> |
| 51 | + </tr> |
| 52 | + <tr> |
| 53 | + <td style="padding: 5px; border: 1px solid black;">f</td> |
| 54 | + <td style="padding: 5px; border: 1px solid black;">3</td> |
| 55 | + <td style="padding: 5px; border: 1px solid black;">3</td> |
| 56 | + <td style="padding: 5px; border: 1px solid black;">1</td> |
| 57 | + <td style="padding: 5px; border: 1px solid black;">Yes</td> |
| 58 | + </tr> |
| 59 | + <tr> |
| 60 | + <td style="padding: 5px; border: 1px solid black;">as</td> |
| 61 | + <td style="padding: 5px; border: 1px solid black;">1, 7</td> |
| 62 | + <td style="padding: 5px; border: 1px solid black;">8</td> |
| 63 | + <td style="padding: 5px; border: 1px solid black;">2</td> |
| 64 | + <td style="padding: 5px; border: 1px solid black;">Yes</td> |
| 65 | + </tr> |
| 66 | + <tr> |
| 67 | + <td style="padding: 5px; border: 1px solid black;">sd</td> |
| 68 | + <td style="padding: 5px; border: 1px solid black;">7, 2</td> |
| 69 | + <td style="padding: 5px; border: 1px solid black;">9</td> |
| 70 | + <td style="padding: 5px; border: 1px solid black;">2</td> |
| 71 | + <td style="padding: 5px; border: 1px solid black;">No</td> |
| 72 | + </tr> |
| 73 | + <tr> |
| 74 | + <td style="padding: 5px; border: 1px solid black;">df</td> |
| 75 | + <td style="padding: 5px; border: 1px solid black;">2, 3</td> |
| 76 | + <td style="padding: 5px; border: 1px solid black;">5</td> |
| 77 | + <td style="padding: 5px; border: 1px solid black;">2</td> |
| 78 | + <td style="padding: 5px; border: 1px solid black;">No</td> |
| 79 | + </tr> |
| 80 | + <tr> |
| 81 | + <td style="padding: 5px; border: 1px solid black;">asd</td> |
| 82 | + <td style="padding: 5px; border: 1px solid black;">1, 7, 2</td> |
| 83 | + <td style="padding: 5px; border: 1px solid black;">10</td> |
| 84 | + <td style="padding: 5px; border: 1px solid black;">3</td> |
| 85 | + <td style="padding: 5px; border: 1px solid black;">No</td> |
| 86 | + </tr> |
| 87 | + <tr> |
| 88 | + <td style="padding: 5px; border: 1px solid black;">sdf</td> |
| 89 | + <td style="padding: 5px; border: 1px solid black;">7, 2, 3</td> |
| 90 | + <td style="padding: 5px; border: 1px solid black;">12</td> |
| 91 | + <td style="padding: 5px; border: 1px solid black;">3</td> |
| 92 | + <td style="padding: 5px; border: 1px solid black;">Yes</td> |
| 93 | + </tr> |
| 94 | + <tr> |
| 95 | + <td style="padding: 5px; border: 1px solid black;">asdf</td> |
| 96 | + <td style="padding: 5px; border: 1px solid black;">1, 7, 2, 3</td> |
| 97 | + <td style="padding: 5px; border: 1px solid black;">13</td> |
| 98 | + <td style="padding: 5px; border: 1px solid black;">4</td> |
| 99 | + <td style="padding: 5px; border: 1px solid black;">No</td> |
| 100 | + </tr> |
| 101 | + </tbody> |
| 102 | +</table> |
| 103 | + |
| 104 | +<pre> |
| 105 | +<strong>Input:</strong> word = "asdf" |
| 106 | +<strong>Output:</strong> 6 |
| 107 | +<strong>Explanation:</strong> The table above contains the details about every substring of word, and we can see that 6 of them are divisible. |
| 108 | +</pre> |
| 109 | + |
| 110 | +<p><strong class="example">Example 2:</strong></p> |
| 111 | + |
| 112 | +<pre> |
| 113 | +<strong>Input:</strong> word = "bdh" |
| 114 | +<strong>Output:</strong> 4 |
| 115 | +<strong>Explanation:</strong> The 4 divisible substrings are: "b", "d", "h", "bdh". |
| 116 | +It can be shown that there are no other substrings of word that are divisible. |
| 117 | +</pre> |
| 118 | + |
| 119 | +<p><strong class="example">Example 3:</strong></p> |
| 120 | + |
| 121 | +<pre> |
| 122 | +<strong>Input:</strong> word = "abcd" |
| 123 | +<strong>Output:</strong> 6 |
| 124 | +<strong>Explanation:</strong> The 6 divisible substrings are: "a", "b", "c", "d", "ab", "cd". |
| 125 | +It can be shown that there are no other substrings of word that are divisible. |
| 126 | +</pre> |
| 127 | + |
| 128 | +<p> </p> |
| 129 | +<p><strong>Constraints:</strong></p> |
| 130 | + |
| 131 | +<ul> |
| 132 | + <li><code>1 <= word.length <= 2000</code></li> |
| 133 | + <li><code>word</code> consists only of lowercase English letters.</li> |
| 134 | +</ul> |
| 135 | + |
| 136 | +## 解法 |
| 137 | + |
| 138 | +<!-- 这里可写通用的实现逻辑 --> |
| 139 | + |
| 140 | +**方法一:枚举** |
| 141 | + |
| 142 | +我们先用一个哈希表或数组 $mp$ 记录每个字母对应的数字。 |
| 143 | + |
| 144 | +然后,我们枚举子串的起始位置 $i$,再枚举子串的结束位置 $j$,计算子串 $s[i..j]$ 的数字和 $s$,如果 $s$ 能被 $j-i+1$ 整除,那么就找到了一个可被整除的子串,将答案加一。 |
| 145 | + |
| 146 | +枚举结束后,返回答案。 |
| 147 | + |
| 148 | +时间复杂度 $O(n^2)$,空间复杂度 $O(C)$。其中 $n$ 是字符串 $word$ 的长度,而 $C$ 是字符集的大小,本题中 $C=26$。 |
| 149 | + |
| 150 | +<!-- tabs:start --> |
| 151 | + |
| 152 | +### **Python3** |
| 153 | + |
| 154 | +<!-- 这里可写当前语言的特殊实现逻辑 --> |
| 155 | + |
| 156 | +```python |
| 157 | +class Solution: |
| 158 | + def countDivisibleSubstrings(self, word: str) -> int: |
| 159 | + d = ["ab", "cde", "fgh", "ijk", "lmn", "opq", "rst", "uvw", "xyz"] |
| 160 | + mp = {} |
| 161 | + for i, s in enumerate(d, 1): |
| 162 | + for c in s: |
| 163 | + mp[c] = i |
| 164 | + ans = 0 |
| 165 | + n = len(word) |
| 166 | + for i in range(n): |
| 167 | + s = 0 |
| 168 | + for j in range(i, n): |
| 169 | + s += mp[word[j]] |
| 170 | + ans += s % (j - i + 1) == 0 |
| 171 | + return ans |
| 172 | +``` |
| 173 | + |
| 174 | +### **Java** |
| 175 | + |
| 176 | +<!-- 这里可写当前语言的特殊实现逻辑 --> |
| 177 | + |
| 178 | +```java |
| 179 | +class Solution { |
| 180 | + public int countDivisibleSubstrings(String word) { |
| 181 | + String[] d = {"ab", "cde", "fgh", "ijk", "lmn", "opq", "rst", "uvw", "xyz"}; |
| 182 | + int[] mp = new int[26]; |
| 183 | + for (int i = 0; i < d.length; ++i) { |
| 184 | + for (char c : d[i].toCharArray()) { |
| 185 | + mp[c - 'a'] = i + 1; |
| 186 | + } |
| 187 | + } |
| 188 | + int ans = 0; |
| 189 | + int n = word.length(); |
| 190 | + for (int i = 0; i < n; ++i) { |
| 191 | + int s = 0; |
| 192 | + for (int j = i; j < n; ++j) { |
| 193 | + s += mp[word.charAt(j) - 'a']; |
| 194 | + ans += s % (j - i + 1) == 0 ? 1 : 0; |
| 195 | + } |
| 196 | + } |
| 197 | + return ans; |
| 198 | + } |
| 199 | +} |
| 200 | +``` |
| 201 | + |
| 202 | +### **C++** |
| 203 | + |
| 204 | +```cpp |
| 205 | +class Solution { |
| 206 | +public: |
| 207 | + int countDivisibleSubstrings(string word) { |
| 208 | + string d[9] = {"ab", "cde", "fgh", "ijk", "lmn", "opq", "rst", "uvw", "xyz"}; |
| 209 | + int mp[26]{}; |
| 210 | + for (int i = 0; i < 9; ++i) { |
| 211 | + for (char& c : d[i]) { |
| 212 | + mp[c - 'a'] = i + 1; |
| 213 | + } |
| 214 | + } |
| 215 | + int ans = 0; |
| 216 | + int n = word.size(); |
| 217 | + for (int i = 0; i < n; ++i) { |
| 218 | + int s = 0; |
| 219 | + for (int j = i; j < n; ++j) { |
| 220 | + s += mp[word[j] - 'a']; |
| 221 | + ans += s % (j - i + 1) == 0 ? 1 : 0; |
| 222 | + } |
| 223 | + } |
| 224 | + return ans; |
| 225 | + } |
| 226 | +}; |
| 227 | +``` |
| 228 | +
|
| 229 | +### **Go** |
| 230 | +
|
| 231 | +```go |
| 232 | +func countDivisibleSubstrings(word string) (ans int) { |
| 233 | + d := []string{"ab", "cde", "fgh", "ijk", "lmn", "opq", "rst", "uvw", "xyz"} |
| 234 | + mp := [26]int{} |
| 235 | + for i, s := range d { |
| 236 | + for _, c := range s { |
| 237 | + mp[c-'a'] = i + 1 |
| 238 | + } |
| 239 | + } |
| 240 | + n := len(word) |
| 241 | + for i := 0; i < n; i++ { |
| 242 | + s := 0 |
| 243 | + for j := i; j < n; j++ { |
| 244 | + s += mp[word[j]-'a'] |
| 245 | + if s%(j-i+1) == 0 { |
| 246 | + ans++ |
| 247 | + } |
| 248 | + } |
| 249 | + } |
| 250 | + return |
| 251 | +} |
| 252 | +``` |
| 253 | + |
| 254 | +### **TypeScript** |
| 255 | + |
| 256 | +```ts |
| 257 | +function countDivisibleSubstrings(word: string): number { |
| 258 | + const d: string[] = ['ab', 'cde', 'fgh', 'ijk', 'lmn', 'opq', 'rst', 'uvw', 'xyz']; |
| 259 | + const mp: number[] = Array(26).fill(0); |
| 260 | + for (let i = 0; i < d.length; ++i) { |
| 261 | + for (const c of d[i]) { |
| 262 | + mp[c.charCodeAt(0) - 'a'.charCodeAt(0)] = i + 1; |
| 263 | + } |
| 264 | + } |
| 265 | + const n = word.length; |
| 266 | + let ans = 0; |
| 267 | + for (let i = 0; i < n; ++i) { |
| 268 | + let s = 0; |
| 269 | + for (let j = i; j < n; ++j) { |
| 270 | + s += mp[word.charCodeAt(j) - 'a'.charCodeAt(0)]; |
| 271 | + if (s % (j - i + 1) === 0) { |
| 272 | + ++ans; |
| 273 | + } |
| 274 | + } |
| 275 | + } |
| 276 | + return ans; |
| 277 | +} |
| 278 | +``` |
| 279 | + |
| 280 | +### **Rust** |
| 281 | + |
| 282 | +```rust |
| 283 | +impl Solution { |
| 284 | + pub fn count_divisible_substrings(word: String) -> i32 { |
| 285 | + let d = vec!["ab", "cde", "fgh", "ijk", "lmn", "opq", "rst", "uvw", "xyz"]; |
| 286 | + let mut mp = vec![0; 26]; |
| 287 | + |
| 288 | + for (i, s) in d.iter().enumerate() { |
| 289 | + s.chars().for_each(|c| { |
| 290 | + mp[(c as usize) - ('a' as usize)] = (i + 1) as i32; |
| 291 | + }); |
| 292 | + } |
| 293 | + |
| 294 | + let mut ans = 0; |
| 295 | + let n = word.len(); |
| 296 | + |
| 297 | + for i in 0..n { |
| 298 | + let mut s = 0; |
| 299 | + |
| 300 | + for j in i..n { |
| 301 | + s += mp[(word.as_bytes()[j] as usize) - ('a' as usize)]; |
| 302 | + ans += (s % ((j - i + 1) as i32) == 0) as i32; |
| 303 | + } |
| 304 | + } |
| 305 | + |
| 306 | + ans |
| 307 | + } |
| 308 | +} |
| 309 | +``` |
| 310 | + |
| 311 | +### **...** |
| 312 | + |
| 313 | +``` |
| 314 | +
|
| 315 | +``` |
| 316 | + |
| 317 | +<!-- tabs:end --> |
0 commit comments