|
44 | 44 |
|
45 | 45 | <!-- 这里可写通用的实现逻辑 -->
|
46 | 46 |
|
| 47 | +先求每行、每列的前缀和。然后从大到小枚举尺寸 k,找到第一个符合条件的 k,然后返回即可。否则最后返回 1。 |
| 48 | + |
47 | 49 | <!-- tabs:start -->
|
48 | 50 |
|
49 | 51 | ### **Python3**
|
50 | 52 |
|
51 | 53 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
52 | 54 |
|
53 | 55 | ```python
|
| 56 | +class Solution: |
| 57 | + def largestMagicSquare(self, grid: List[List[int]]) -> int: |
| 58 | + m, n = len(grid), len(grid[0]) |
| 59 | + rowsum = [[0] * (n + 1) for _ in range(m + 1)] |
| 60 | + colsum = [[0] * (n + 1) for _ in range(m + 1)] |
| 61 | + for i in range(1, m + 1): |
| 62 | + for j in range(1, n + 1): |
| 63 | + rowsum[i][j] = rowsum[i][j - 1] + grid[i - 1][j - 1] |
| 64 | + colsum[i][j] = colsum[i - 1][j] + grid[i - 1][j - 1] |
| 65 | + |
| 66 | + def check(x1, y1, x2, y2): |
| 67 | + val = rowsum[x1 + 1][y2 + 1] - rowsum[x1 + 1][y1] |
| 68 | + for i in range(x1 + 1, x2 + 1): |
| 69 | + if rowsum[i + 1][y2 + 1] - rowsum[i + 1][y1] != val: |
| 70 | + return False |
| 71 | + for j in range(y1, y2 + 1): |
| 72 | + if colsum[x2 + 1][j + 1] - colsum[x1][j + 1] != val: |
| 73 | + return False |
| 74 | + s, i, j = 0, x1, y1 |
| 75 | + while i <= x2: |
| 76 | + s += grid[i][j] |
| 77 | + i += 1 |
| 78 | + j += 1 |
| 79 | + if s != val: |
| 80 | + return False |
| 81 | + s, i, j = 0, x1, y2 |
| 82 | + while i <= x2: |
| 83 | + s += grid[i][j] |
| 84 | + i += 1 |
| 85 | + j -= 1 |
| 86 | + if s != val: |
| 87 | + return False |
| 88 | + return True |
54 | 89 |
|
| 90 | + for k in range(min(m, n), 1, -1): |
| 91 | + i = 0 |
| 92 | + while i + k - 1 < m: |
| 93 | + j = 0 |
| 94 | + while j + k - 1 < n: |
| 95 | + i2, j2 = i + k - 1, j + k - 1 |
| 96 | + if check(i, j, i2, j2): |
| 97 | + return k |
| 98 | + j += 1 |
| 99 | + i += 1 |
| 100 | + return 1 |
55 | 101 | ```
|
56 | 102 |
|
57 | 103 | ### **Java**
|
58 | 104 |
|
59 | 105 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
60 | 106 |
|
61 | 107 | ```java
|
| 108 | +class Solution { |
| 109 | + private int[][] rowsum; |
| 110 | + private int[][] colsum; |
| 111 | + |
| 112 | + public int largestMagicSquare(int[][] grid) { |
| 113 | + int m = grid.length, n = grid[0].length; |
| 114 | + rowsum = new int[m + 1][n + 1]; |
| 115 | + colsum = new int[m + 1][n + 1]; |
| 116 | + for (int i = 1; i <= m; ++i) { |
| 117 | + for (int j = 1; j <= n; ++j) { |
| 118 | + rowsum[i][j] = rowsum[i][j - 1] + grid[i - 1][j - 1]; |
| 119 | + colsum[i][j] = colsum[i - 1][j] + grid[i - 1][j - 1]; |
| 120 | + } |
| 121 | + } |
| 122 | + for (int k = Math.min(m, n); k > 1; --k) { |
| 123 | + for (int i = 0; i + k - 1 < m; ++i) { |
| 124 | + for (int j = 0; j + k - 1 < n; ++j) { |
| 125 | + int i2 = i + k - 1, j2 = j + k - 1; |
| 126 | + if (check(grid, i, j, i2, j2)) { |
| 127 | + return k; |
| 128 | + } |
| 129 | + } |
| 130 | + } |
| 131 | + } |
| 132 | + return 1; |
| 133 | + } |
| 134 | + |
| 135 | + private boolean check(int[][] grid, int x1, int y1, int x2, int y2) { |
| 136 | + int val = rowsum[x1 + 1][y2 + 1] - rowsum[x1 + 1][y1]; |
| 137 | + for (int i = x1 + 1; i <= x2; ++i) { |
| 138 | + if (rowsum[i + 1][y2 + 1] - rowsum[i + 1][y1] != val) { |
| 139 | + return false; |
| 140 | + } |
| 141 | + } |
| 142 | + for (int j = y1; j <= y2; ++j) { |
| 143 | + if (colsum[x2 + 1][j + 1] - colsum[x1][j + 1] != val) { |
| 144 | + return false; |
| 145 | + } |
| 146 | + } |
| 147 | + int s = 0; |
| 148 | + for (int i = x1, j = y1; i <= x2; ++i, ++j) { |
| 149 | + s += grid[i][j]; |
| 150 | + } |
| 151 | + if (s != val) { |
| 152 | + return false; |
| 153 | + } |
| 154 | + s = 0; |
| 155 | + for (int i = x1, j = y2; i <= x2; ++i, --j) { |
| 156 | + s += grid[i][j]; |
| 157 | + } |
| 158 | + if (s != val) { |
| 159 | + return false; |
| 160 | + } |
| 161 | + return true; |
| 162 | + } |
| 163 | +} |
| 164 | +``` |
| 165 | + |
| 166 | +### **C++** |
| 167 | + |
| 168 | +```cpp |
| 169 | +class Solution { |
| 170 | +public: |
| 171 | + int largestMagicSquare(vector<vector<int>> &grid) { |
| 172 | + int m = grid.size(), n = grid.size(); |
| 173 | + vector<vector<int>> rowsum(m + 1, vector<int>(n + 1)); |
| 174 | + vector<vector<int>> colsum(m + 1, vector<int>(n + 1)); |
| 175 | + for (int i = 1; i <= m; ++i) |
| 176 | + { |
| 177 | + for (int j = 1; j <= n; ++j) |
| 178 | + { |
| 179 | + rowsum[i][j] = rowsum[i][j - 1] + grid[i - 1][j - 1]; |
| 180 | + colsum[i][j] = colsum[i - 1][j] + grid[i - 1][j - 1]; |
| 181 | + } |
| 182 | + } |
| 183 | + for (int k = min(m, n); k > 1; --k) |
| 184 | + { |
| 185 | + for (int i = 0; i + k - 1 < m; ++i) |
| 186 | + { |
| 187 | + for (int j = 0; j + k - 1 < n; ++j) |
| 188 | + { |
| 189 | + int i2 = i + k - 1, j2 = j + k - 1; |
| 190 | + if (check(grid, rowsum, colsum, i, j, i2, j2)) |
| 191 | + return k; |
| 192 | + } |
| 193 | + } |
| 194 | + } |
| 195 | + return 1; |
| 196 | + } |
| 197 | + |
| 198 | + bool check(vector<vector<int>> &grid, vector<vector<int>> &rowsum, vector<vector<int>> &colsum, int x1, int y1, int x2, int y2) |
| 199 | + { |
| 200 | + int val = rowsum[x1 + 1][y2 + 1] - rowsum[x1 + 1][y1]; |
| 201 | + for (int i = x1 + 1; i <= x2; ++i) |
| 202 | + if (rowsum[i + 1][y2 + 1] - rowsum[i + 1][y1] != val) |
| 203 | + return false; |
| 204 | + for (int j = y1; j <= y2; ++j) |
| 205 | + if (colsum[x2 + 1][j + 1] - colsum[x1][j + 1] != val) |
| 206 | + return false; |
| 207 | + int s = 0; |
| 208 | + for (int i = x1, j = y1; i <= x2; ++i, ++j) |
| 209 | + s += grid[i][j]; |
| 210 | + if (s != val) |
| 211 | + return false; |
| 212 | + s = 0; |
| 213 | + for (int i = x1, j = y2; i <= x2; ++i, --j) |
| 214 | + s += grid[i][j]; |
| 215 | + if (s != val) |
| 216 | + return false; |
| 217 | + return true; |
| 218 | + } |
| 219 | +}; |
| 220 | +``` |
| 221 | + |
| 222 | +### **Go** |
| 223 | + |
| 224 | +```go |
| 225 | +func largestMagicSquare(grid [][]int) int { |
| 226 | + m, n := len(grid), len(grid[0]) |
| 227 | + rowsum := make([][]int, m+1) |
| 228 | + colsum := make([][]int, m+1) |
| 229 | + for i := 0; i <= m; i++ { |
| 230 | + rowsum[i] = make([]int, n+1) |
| 231 | + colsum[i] = make([]int, n+1) |
| 232 | + } |
| 233 | + for i := 1; i < m+1; i++ { |
| 234 | + for j := 1; j < n+1; j++ { |
| 235 | + rowsum[i][j] = rowsum[i][j-1] + grid[i-1][j-1] |
| 236 | + colsum[i][j] = colsum[i-1][j] + grid[i-1][j-1] |
| 237 | + } |
| 238 | + } |
| 239 | + for k := min(m, n); k > 1; k-- { |
| 240 | + for i := 0; i+k-1 < m; i++ { |
| 241 | + for j := 0; j+k-1 < n; j++ { |
| 242 | + i2, j2 := i+k-1, j+k-1 |
| 243 | + if check(grid, rowsum, colsum, i, j, i2, j2) { |
| 244 | + return k |
| 245 | + } |
| 246 | + } |
| 247 | + } |
| 248 | + } |
| 249 | + return 1 |
| 250 | +} |
| 251 | + |
| 252 | +func check(grid, rowsum, colsum [][]int, x1, y1, x2, y2 int) bool { |
| 253 | + val := rowsum[x1+1][y2+1] - rowsum[x1+1][y1] |
| 254 | + for i := x1 + 1; i < x2+1; i++ { |
| 255 | + if rowsum[i+1][y2+1]-rowsum[i+1][y1] != val { |
| 256 | + return false |
| 257 | + } |
| 258 | + } |
| 259 | + for j := y1; j < y2+1; j++ { |
| 260 | + if colsum[x2+1][j+1]-colsum[x1][j+1] != val { |
| 261 | + return false |
| 262 | + } |
| 263 | + } |
| 264 | + s := 0 |
| 265 | + for i, j := x1, y1; i <= x2; i, j = i+1, j+1 { |
| 266 | + s += grid[i][j] |
| 267 | + } |
| 268 | + if s != val { |
| 269 | + return false |
| 270 | + } |
| 271 | + s = 0 |
| 272 | + for i, j := x1, y2; i <= x2; i, j = i+1, j-1 { |
| 273 | + s += grid[i][j] |
| 274 | + } |
| 275 | + if s != val { |
| 276 | + return false |
| 277 | + } |
| 278 | + return true |
| 279 | +} |
62 | 280 |
|
| 281 | +func min(a, b int) int { |
| 282 | + if a > b { |
| 283 | + return a |
| 284 | + } |
| 285 | + return b |
| 286 | +} |
63 | 287 | ```
|
64 | 288 |
|
65 | 289 | ### **...**
|
|
0 commit comments