|
60 | 60 |
|
61 | 61 | <!-- 这里可写通用的实现逻辑 -->
|
62 | 62 |
|
| 63 | +**方法一:DFS** |
| 64 | + |
| 65 | +我们设计一个函数 $dfs(nums)$,其中 $nums$ 表示当前的数字序列,函数返回一个布尔值,表示是否存在一种排列方式,使得这个数字序列可以得到 $24$。 |
| 66 | + |
| 67 | +如果 $nums$ 的长度为 $1$,那么只有当这个数字等于 $24$ 时,我们才返回 $true$,否则返回 $false$。 |
| 68 | + |
| 69 | +否则,我们可以枚举 $nums$ 中的任意两个数 $a$ 和 $b$ 作为左右两个操作数,枚举 $a$ 和 $b$ 之间的运算符 $op$,那么 $a\ op\ b$ 的结果就可以作为新的数字序列的一个元素,我们将其加入到新的数字序列中,并从 $nums$ 中移除 $a$ 和 $b$,然后递归地调用 $dfs$ 函数,如果返回 $true$,那么我们就找到了一种排列方式,使得这个数字序列可以得到 $24$,我们就返回 $true$。 |
| 70 | + |
| 71 | +如果枚举完所有的情况都没有返回 $true$,那么我们就返回 $false$。 |
| 72 | + |
63 | 73 | <!-- tabs:start -->
|
64 | 74 |
|
65 | 75 | ### **Python3**
|
66 | 76 |
|
67 | 77 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
68 | 78 |
|
69 | 79 | ```python
|
| 80 | +class Solution: |
| 81 | + def judgePoint24(self, cards: List[int]) -> bool: |
| 82 | + def dfs(nums: List[float]): |
| 83 | + n = len(nums) |
| 84 | + if n == 1: |
| 85 | + if abs(nums[0] - 24) < 1e-6: |
| 86 | + return True |
| 87 | + return False |
| 88 | + ok = False |
| 89 | + for i in range(n): |
| 90 | + for j in range(n): |
| 91 | + if i != j: |
| 92 | + nxt = [nums[k] for k in range(n) if k != i and k != j] |
| 93 | + for op in ops: |
| 94 | + match op: |
| 95 | + case "/": |
| 96 | + if nums[j] == 0: |
| 97 | + continue |
| 98 | + ok |= dfs(nxt + [nums[i] / nums[j]]) |
| 99 | + case "*": |
| 100 | + ok |= dfs(nxt + [nums[i] * nums[j]]) |
| 101 | + case "+": |
| 102 | + ok |= dfs(nxt + [nums[i] + nums[j]]) |
| 103 | + case "-": |
| 104 | + ok |= dfs(nxt + [nums[i] - nums[j]]) |
| 105 | + if ok: |
| 106 | + return True |
| 107 | + return ok |
70 | 108 |
|
| 109 | + ops = ("+", "-", "*", "/") |
| 110 | + nums = [float(x) for x in cards] |
| 111 | + return dfs(nums) |
71 | 112 | ```
|
72 | 113 |
|
73 | 114 | ### **Java**
|
74 | 115 |
|
75 | 116 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
76 | 117 |
|
77 | 118 | ```java
|
| 119 | +class Solution { |
| 120 | + private final char[] ops = {'+', '-', '*', '/'}; |
| 121 | + |
| 122 | + public boolean judgePoint24(int[] cards) { |
| 123 | + List<Double> nums = new ArrayList<>(); |
| 124 | + for (int num : cards) { |
| 125 | + nums.add((double) num); |
| 126 | + } |
| 127 | + return dfs(nums); |
| 128 | + } |
| 129 | + |
| 130 | + private boolean dfs(List<Double> nums) { |
| 131 | + int n = nums.size(); |
| 132 | + if (n == 1) { |
| 133 | + return Math.abs(nums.get(0) - 24) < 1e-6; |
| 134 | + } |
| 135 | + boolean ok = false; |
| 136 | + for (int i = 0; i < n; ++i) { |
| 137 | + for (int j = 0; j < n; ++j) { |
| 138 | + if (i != j) { |
| 139 | + List<Double> nxt = new ArrayList<>(); |
| 140 | + for (int k = 0; k < n; ++k) { |
| 141 | + if (k != i && k != j) { |
| 142 | + nxt.add(nums.get(k)); |
| 143 | + } |
| 144 | + } |
| 145 | + for (char op : ops) { |
| 146 | + switch (op) { |
| 147 | + case '/' -> { |
| 148 | + if (nums.get(j) == 0) { |
| 149 | + continue; |
| 150 | + } |
| 151 | + nxt.add(nums.get(i) / nums.get(j)); |
| 152 | + } |
| 153 | + case '*' -> { |
| 154 | + nxt.add(nums.get(i) * nums.get(j)); |
| 155 | + } |
| 156 | + case '+' -> { |
| 157 | + nxt.add(nums.get(i) + nums.get(j)); |
| 158 | + } |
| 159 | + case '-' -> { |
| 160 | + nxt.add(nums.get(i) - nums.get(j)); |
| 161 | + } |
| 162 | + } |
| 163 | + ok |= dfs(nxt); |
| 164 | + if (ok) { |
| 165 | + return true; |
| 166 | + } |
| 167 | + nxt.remove(nxt.size() - 1); |
| 168 | + } |
| 169 | + } |
| 170 | + } |
| 171 | + } |
| 172 | + return ok; |
| 173 | + } |
| 174 | +} |
| 175 | +``` |
| 176 | + |
| 177 | +### **C++** |
| 178 | + |
| 179 | +```cpp |
| 180 | +class Solution { |
| 181 | +public: |
| 182 | + bool judgePoint24(vector<int>& cards) { |
| 183 | + vector<double> nums; |
| 184 | + for (int num : cards) { |
| 185 | + nums.push_back(static_cast<double>(num)); |
| 186 | + } |
| 187 | + return dfs(nums); |
| 188 | + } |
| 189 | + |
| 190 | +private: |
| 191 | + const char ops[4] = {'+', '-', '*', '/'}; |
| 192 | + |
| 193 | + bool dfs(vector<double>& nums) { |
| 194 | + int n = nums.size(); |
| 195 | + if (n == 1) { |
| 196 | + return abs(nums[0] - 24) < 1e-6; |
| 197 | + } |
| 198 | + bool ok = false; |
| 199 | + for (int i = 0; i < n; ++i) { |
| 200 | + for (int j = 0; j < n; ++j) { |
| 201 | + if (i != j) { |
| 202 | + vector<double> nxt; |
| 203 | + for (int k = 0; k < n; ++k) { |
| 204 | + if (k != i && k != j) { |
| 205 | + nxt.push_back(nums[k]); |
| 206 | + } |
| 207 | + } |
| 208 | + for (char op : ops) { |
| 209 | + switch (op) { |
| 210 | + case '/': |
| 211 | + if (nums[j] == 0) { |
| 212 | + continue; |
| 213 | + } |
| 214 | + nxt.push_back(nums[i] / nums[j]); |
| 215 | + break; |
| 216 | + case '*': |
| 217 | + nxt.push_back(nums[i] * nums[j]); |
| 218 | + break; |
| 219 | + case '+': |
| 220 | + nxt.push_back(nums[i] + nums[j]); |
| 221 | + break; |
| 222 | + case '-': |
| 223 | + nxt.push_back(nums[i] - nums[j]); |
| 224 | + break; |
| 225 | + } |
| 226 | + ok |= dfs(nxt); |
| 227 | + if (ok) { |
| 228 | + return true; |
| 229 | + } |
| 230 | + nxt.pop_back(); |
| 231 | + } |
| 232 | + } |
| 233 | + } |
| 234 | + } |
| 235 | + return ok; |
| 236 | + } |
| 237 | +}; |
| 238 | +``` |
| 239 | + |
| 240 | +### **Go** |
| 241 | + |
| 242 | +```go |
| 243 | +func judgePoint24(cards []int) bool { |
| 244 | + ops := [4]rune{'+', '-', '*', '/'} |
| 245 | + nums := make([]float64, len(cards)) |
| 246 | + for i, num := range cards { |
| 247 | + nums[i] = float64(num) |
| 248 | + } |
| 249 | + var dfs func([]float64) bool |
| 250 | + dfs = func(nums []float64) bool { |
| 251 | + n := len(nums) |
| 252 | + if n == 1 { |
| 253 | + return math.Abs(nums[0]-24) < 1e-6 |
| 254 | + } |
| 255 | + ok := false |
| 256 | + for i := 0; i < n; i++ { |
| 257 | + for j := 0; j < n; j++ { |
| 258 | + if i != j { |
| 259 | + var nxt []float64 |
| 260 | + for k := 0; k < n; k++ { |
| 261 | + if k != i && k != j { |
| 262 | + nxt = append(nxt, nums[k]) |
| 263 | + } |
| 264 | + } |
| 265 | + for _, op := range ops { |
| 266 | + switch op { |
| 267 | + case '/': |
| 268 | + if nums[j] == 0 { |
| 269 | + continue |
| 270 | + } |
| 271 | + nxt = append(nxt, nums[i]/nums[j]) |
| 272 | + case '*': |
| 273 | + nxt = append(nxt, nums[i]*nums[j]) |
| 274 | + case '+': |
| 275 | + nxt = append(nxt, nums[i]+nums[j]) |
| 276 | + case '-': |
| 277 | + nxt = append(nxt, nums[i]-nums[j]) |
| 278 | + } |
| 279 | + ok = ok || dfs(nxt) |
| 280 | + if ok { |
| 281 | + return true |
| 282 | + } |
| 283 | + nxt = nxt[:len(nxt)-1] |
| 284 | + } |
| 285 | + } |
| 286 | + } |
| 287 | + } |
| 288 | + return ok |
| 289 | + } |
| 290 | + |
| 291 | + return dfs(nums) |
| 292 | +} |
| 293 | +``` |
| 294 | + |
| 295 | +### **TypeScript** |
| 296 | + |
| 297 | +```ts |
| 298 | +function judgePoint24(cards: number[]): boolean { |
| 299 | + const ops: string[] = ['+', '-', '*', '/']; |
| 300 | + const dfs = (nums: number[]): boolean => { |
| 301 | + const n: number = nums.length; |
| 302 | + if (n === 1) { |
| 303 | + return Math.abs(nums[0] - 24) < 1e-6; |
| 304 | + } |
| 305 | + let ok: boolean = false; |
| 306 | + for (let i = 0; i < n; i++) { |
| 307 | + for (let j = 0; j < n; j++) { |
| 308 | + if (i !== j) { |
| 309 | + const nxt: number[] = []; |
| 310 | + for (let k = 0; k < n; k++) { |
| 311 | + if (k !== i && k !== j) { |
| 312 | + nxt.push(nums[k]); |
| 313 | + } |
| 314 | + } |
| 315 | + for (const op of ops) { |
| 316 | + switch (op) { |
| 317 | + case '/': |
| 318 | + if (nums[j] === 0) { |
| 319 | + continue; |
| 320 | + } |
| 321 | + nxt.push(nums[i] / nums[j]); |
| 322 | + break; |
| 323 | + case '*': |
| 324 | + nxt.push(nums[i] * nums[j]); |
| 325 | + break; |
| 326 | + case '+': |
| 327 | + nxt.push(nums[i] + nums[j]); |
| 328 | + break; |
| 329 | + case '-': |
| 330 | + nxt.push(nums[i] - nums[j]); |
| 331 | + break; |
| 332 | + } |
| 333 | + ok = ok || dfs(nxt); |
| 334 | + if (ok) { |
| 335 | + return true; |
| 336 | + } |
| 337 | + nxt.pop(); |
| 338 | + } |
| 339 | + } |
| 340 | + } |
| 341 | + } |
| 342 | + return ok; |
| 343 | + }; |
78 | 344 |
|
| 345 | + return dfs(cards); |
| 346 | +} |
79 | 347 | ```
|
80 | 348 |
|
81 | 349 | ### **...**
|
|
0 commit comments