Skip to content

Commit 2cc6ac5

Browse files
authored
Merge branch 'doc-prod' into offsetgroup-alignmentgroup
2 parents 5690cc9 + 6cc19b8 commit 2cc6ac5

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

52 files changed

+563
-277
lines changed

.circleci/config.yml

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -425,8 +425,8 @@ jobs:
425425
. venv/bin/activate
426426
echo ${mapbox_token} > python/.mapbox_token
427427
make -kj8 || make -kj8
428-
curl https://raw.githubusercontent.com/plotly/documentation/source-design-merge/front-matter-ci.py > front-matter-ci.py
429-
curl https://raw.githubusercontent.com/plotly/documentation/source-design-merge/check-or-enforce-order.py > check-or-enforce-order.py
428+
curl https://raw.githubusercontent.com/plotly/graphing-library-docs/master/front-matter-ci.py > front-matter-ci.py
429+
curl https://raw.githubusercontent.com/plotly/graphing-library-docs/master/check-or-enforce-order.py > check-or-enforce-order.py
430430
python front-matter-ci.py build/html
431431
python check-or-enforce-order.py build/html
432432
if [ "${CIRCLE_BRANCH}" == "doc-prod" ]; then
@@ -448,14 +448,14 @@ jobs:
448448
name: trigger doc build
449449
command: |
450450
if [ "${CIRCLE_BRANCH}" == "doc-prod" ]; then
451-
git clone --depth=1 --branch=source-design-merge https://github.com/plotly/documentation.git
452-
cd documentation
451+
git clone --depth=1 https://github.com/plotly/graphing-library-docs.git
452+
cd graphing-library-docs
453453
git config user.name plotlydocbot
454454
git config user.email [email protected]
455455
git commit --allow-empty -m "deploying https://github.com/plotly/plotly.py/commit/${CIRCLE_SHA1}"
456456
git push
457457
cd ..
458-
rm -rf documentation
458+
rm -rf graphing-library-docs
459459
fi
460460
461461
- run:

binder/requirements.txt

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -12,3 +12,5 @@ psutil
1212
requests
1313
networkx
1414
scikit-image
15+
datashader
16+
pyarrow

doc/python/3d-scatter-plots.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@ jupyter:
3535

3636
## 3D scatter plot with Plotly Express
3737

38-
[Plotly Express](/python/plotly-express/) is the easy-to-use, high-level interface to Plotly, which [operates on "tidy" data](/python/px-arguments/).
38+
[Plotly Express](/python/plotly-express/) is the easy-to-use, high-level interface to Plotly, which [operates on "tidy" data](/python/px-arguments/) and produces [easy-to-style figures](/python/styling-plotly-express/).
3939

4040
Like the [2D scatter plot](https://plot.ly/python/line-and-scatter/) `px.scatter`, the 3D function `px.scatter_3d` plots individual data in three-dimensional space.
4141

doc/python/bar-charts.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@ jupyter:
3535

3636
### Bar chart with Plotly Express
3737

38-
[Plotly Express](/python/plotly-express/) is the easy-to-use, high-level interface to Plotly, which [operates on "tidy" data](/python/px-arguments/).
38+
[Plotly Express](/python/plotly-express/) is the easy-to-use, high-level interface to Plotly, which [operates on "tidy" data](/python/px-arguments/) and produces [easy-to-style figures](/python/styling-plotly-express/).
3939

4040
With `px.bar`, each row of the DataFrame is represented as a rectangular mark.
4141

doc/python/box-plots.md

Lines changed: 15 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ jupyter:
55
text_representation:
66
extension: .md
77
format_name: markdown
8-
format_version: '1.2'
8+
format_version: "1.2"
99
jupytext_version: 1.3.1
1010
kernelspec:
1111
display_name: Python 3
@@ -31,16 +31,16 @@ jupyter:
3131
page_type: example_index
3232
permalink: python/box-plots/
3333
redirect_from:
34-
- /python/box/
35-
- /python/basic_statistics/
34+
- /python/box/
35+
- /python/basic_statistics/
3636
thumbnail: thumbnail/box.jpg
3737
---
3838

3939
A [box plot](https://en.wikipedia.org/wiki/Box_plot) is a statistical representation of numerical data through their quartiles. The ends of the box represent the lower and upper quartiles, while the median (second quartile) is marked by a line inside the box. For other statistical representations of numerical data, see [other statistical charts](https://plot.ly/python/statistical-charts/).
4040

4141
## Box Plot with `plotly.express`
4242

43-
[Plotly Express](/python/plotly-express/) is the easy-to-use, high-level interface to Plotly, which [operates on "tidy" data](/python/px-arguments/).
43+
[Plotly Express](/python/plotly-express/) is the easy-to-use, high-level interface to Plotly, which [operates on "tidy" data](/python/px-arguments/) and produces [easy-to-style figures](/python/styling-plotly-express/).
4444

4545
In a box plot created by `px.box`, the distribution of the column given as `y` argument is represented.
4646

@@ -73,13 +73,13 @@ fig.show()
7373

7474
### Choosing The Algorithm For Computing Quartiles
7575

76-
By default, quartiles for box plots are computed using the `linear` method (for more about linear interpolation, see #10 listed on [http://www.amstat.org/publications/jse/v14n3/langford.html](http://www.amstat.org/publications/jse/v14n3/langford.html) and [https://en.wikipedia.org/wiki/Quartile](https://en.wikipedia.org/wiki/Quartile) for more details).
76+
By default, quartiles for box plots are computed using the `linear` method (for more about linear interpolation, see #10 listed on [http://www.amstat.org/publications/jse/v14n3/langford.html](http://www.amstat.org/publications/jse/v14n3/langford.html) and [https://en.wikipedia.org/wiki/Quartile](https://en.wikipedia.org/wiki/Quartile) for more details).
7777

78-
However, you can also choose to use an `exclusive` or an `inclusive` algorithm to compute quartiles.
78+
However, you can also choose to use an `exclusive` or an `inclusive` algorithm to compute quartiles.
7979

80-
The *exclusive* algorithm uses the median to divide the ordered dataset into two halves. If the sample is odd, it does not include the median in either half. Q1 is then the median of the lower half and Q3 is the median of the upper half.
80+
The _exclusive_ algorithm uses the median to divide the ordered dataset into two halves. If the sample is odd, it does not include the median in either half. Q1 is then the median of the lower half and Q3 is the median of the upper half.
8181

82-
The *inclusive* algorithm also uses the median to divide the ordered dataset into two halves, but if the sample is odd, it includes the median in both halves. Q1 is then the median of the lower half and Q3 the median of the upper half.
82+
The _inclusive_ algorithm also uses the median to divide the ordered dataset into two halves, but if the sample is odd, it includes the median in both halves. Q1 is then the median of the lower half and Q3 the median of the upper half.
8383

8484
```python
8585
import plotly.express as px
@@ -92,7 +92,8 @@ fig.show()
9292
```
9393

9494
#### Difference Between Quartile Algorithms
95-
It can sometimes be difficult to see the difference between the linear, inclusive, and exclusive algorithms for computing quartiles. In the following example, the same dataset is visualized using each of the three different quartile computation algorithms.
95+
96+
It can sometimes be difficult to see the difference between the linear, inclusive, and exclusive algorithms for computing quartiles. In the following example, the same dataset is visualized using each of the three different quartile computation algorithms.
9697

9798
```python
9899
import plotly.express as px
@@ -103,7 +104,7 @@ df = pd.DataFrame(dict(
103104
linear=data,
104105
inclusive=data,
105106
exclusive=data
106-
)).melt(var_name="quartilemethod")
107+
)).melt(var_name="quartilemethod")
107108

108109

109110
fig = px.box(df, y="value", facet_col="quartilemethod", color="quartilemethod",
@@ -204,7 +205,7 @@ fig.show()
204205

205206
You can specify precomputed quartile attributes rather than using a built-in quartile computation algorithm.
206207

207-
This could be useful if you have already pre-computed those values or if you need to use a different algorithm than the ones provided.
208+
This could be useful if you have already pre-computed those values or if you need to use a different algorithm than the ones provided.
208209

209210
```python
210211
import plotly.graph_objects as go
@@ -217,9 +218,9 @@ fig.add_trace(go.Box(y=[
217218
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]
218219
], name="Precompiled Quartiles"))
219220

220-
fig.update_traces(q1=[ 1, 2, 3 ], median=[ 4, 5, 6 ],
221-
q3=[ 7, 8, 9 ], lowerfence=[-1, 0, 1],
222-
upperfence=[5, 6, 7], mean=[ 2.2, 2.8, 3.2 ],
221+
fig.update_traces(q1=[ 1, 2, 3 ], median=[ 4, 5, 6 ],
222+
q3=[ 7, 8, 9 ], lowerfence=[-1, 0, 1],
223+
upperfence=[5, 6, 7], mean=[ 2.2, 2.8, 3.2 ],
223224
sd=[ 0.2, 0.4, 0.6 ], notchspan=[ 0.2, 0.4, 0.6 ] )
224225

225226
fig.show()

doc/python/bubble-charts.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -38,7 +38,7 @@ jupyter:
3838

3939
A [bubble chart](https://en.wikipedia.org/wiki/Bubble_chart) is a scatter plot in which a third dimension of the data is shown through the size of markers. For other types of scatter plot, see the [line and scatter page](https://plot.ly/python/line-and-scatter/).
4040

41-
We first show a bubble chart example using Plotly Express. [Plotly Express](/python/plotly-express/) is the easy-to-use, high-level interface to Plotly, which [operates on "tidy" data](/python/px-arguments/). The size of markers is set from the dataframe column given as the `size` parameter.
41+
We first show a bubble chart example using Plotly Express. [Plotly Express](/python/plotly-express/) is the easy-to-use, high-level interface to Plotly, which [operates on "tidy" data](/python/px-arguments/) and produces [easy-to-style figures](/python/styling-plotly-express/). The size of markers is set from the dataframe column given as the `size` parameter.
4242

4343
```python
4444
import plotly.express as px

doc/python/bubble-maps.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -39,7 +39,7 @@ Plotly figures made with `px.scatter_geo`, `px.line_geo` or `px.choropleth` func
3939

4040
### Bubble map with Plotly Express
4141

42-
[Plotly Express](/python/plotly-express/) is the easy-to-use, high-level interface to Plotly, which [operates on "tidy" data](/python/px-arguments/). With `px.scatter_geo`, each line of the dataframe is represented as a marker point. The column set as the `size` argument gives the size of markers.
42+
[Plotly Express](/python/plotly-express/) is the easy-to-use, high-level interface to Plotly, which [operates on "tidy" data](/python/px-arguments/) and produces [easy-to-style figures](/python/styling-plotly-express/). With `px.scatter_geo`, each line of the dataframe is represented as a marker point. The column set as the `size` argument gives the size of markers.
4343

4444
```python
4545
import plotly.express as px

doc/python/choropleth-maps.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -56,7 +56,7 @@ The GeoJSON data is passed to the `geojson` argument, and the data is passed int
5656

5757
### Choropleth Map with plotly.express
5858

59-
[Plotly Express](/python/plotly-express/) is the easy-to-use, high-level interface to Plotly, which [operates on "tidy" data](/python/px-arguments/).
59+
[Plotly Express](/python/plotly-express/) is the easy-to-use, high-level interface to Plotly, which [operates on "tidy" data](/python/px-arguments/) and produces [easy-to-style figures](/python/styling-plotly-express/).
6060

6161
#### GeoJSON with `feature.id`
6262

doc/python/custom-buttons.md

Lines changed: 16 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -5,8 +5,8 @@ jupyter:
55
text_representation:
66
extension: .md
77
format_name: markdown
8-
format_version: '1.1'
9-
jupytext_version: 1.1.7
8+
format_version: '1.2'
9+
jupytext_version: 1.3.2
1010
kernelspec:
1111
display_name: Python 3
1212
language: python
@@ -20,7 +20,7 @@ jupyter:
2020
name: python
2121
nbconvert_exporter: python
2222
pygments_lexer: ipython3
23-
version: 3.7.2
23+
version: 3.7.3
2424
plotly:
2525
description: How to add custom buttons to update Plotly chart attributes in Python.
2626
display_as: controls
@@ -78,7 +78,7 @@ fig.update_scenes(
7878
# Add dropdown
7979
fig.update_layout(
8080
updatemenus=[
81-
go.layout.Updatemenu(
81+
dict(
8282
type = "buttons",
8383
direction = "left",
8484
buttons=list([
@@ -106,7 +106,7 @@ fig.update_layout(
106106
# Add annotation
107107
fig.update_layout(
108108
annotations=[
109-
go.layout.Annotation(text="Trace type:", showarrow=False,
109+
dict(text="Trace type:", showarrow=False,
110110
x=0, y=1.08, yref="paper", align="left")
111111
]
112112
)
@@ -153,7 +153,7 @@ button_layer_2_height = 1.065
153153

154154
fig.update_layout(
155155
updatemenus=[
156-
go.layout.Updatemenu(
156+
dict(
157157
buttons=list([
158158
dict(
159159
args=["colorscale", "Viridis"],
@@ -185,7 +185,7 @@ fig.update_layout(
185185
y=button_layer_1_height,
186186
yanchor="top"
187187
),
188-
go.layout.Updatemenu(
188+
dict(
189189
buttons=list([
190190
dict(
191191
args=["reversescale", False],
@@ -207,7 +207,7 @@ fig.update_layout(
207207
y=button_layer_2_height,
208208
yanchor="top"
209209
),
210-
go.layout.Updatemenu(
210+
dict(
211211
buttons=list([
212212
dict(
213213
args=[{"contours.showlines": False, "type": "contour"}],
@@ -234,11 +234,11 @@ fig.update_layout(
234234

235235
fig.update_layout(
236236
annotations=[
237-
go.layout.Annotation(text="colorscale", x=0, xref="paper", y=1.1, yref="paper",
237+
dict(text="colorscale", x=0, xref="paper", y=1.1, yref="paper",
238238
align="left", showarrow=False),
239-
go.layout.Annotation(text="Reverse<br>Colorscale", x=0, xref="paper", y=1.06,
239+
dict(text="Reverse<br>Colorscale", x=0, xref="paper", y=1.06,
240240
yref="paper", showarrow=False),
241-
go.layout.Annotation(text="Lines", x=0.47, xref="paper", y=1.045, yref="paper",
241+
dict(text="Lines", x=0.47, xref="paper", y=1.045, yref="paper",
242242
showarrow=False)
243243
])
244244

@@ -296,25 +296,25 @@ fig.add_trace(
296296
)
297297

298298
# Add buttons that add shapes
299-
cluster0 = [go.layout.Shape(type="circle",
299+
cluster0 = [dict(type="circle",
300300
xref="x", yref="y",
301301
x0=min(x0), y0=min(y0),
302302
x1=max(x0), y1=max(y0),
303303
line=dict(color="DarkOrange"))]
304-
cluster1 = [go.layout.Shape(type="circle",
304+
cluster1 = [dict(type="circle",
305305
xref="x", yref="y",
306306
x0=min(x1), y0=min(y1),
307307
x1=max(x1), y1=max(y1),
308308
line=dict(color="Crimson"))]
309-
cluster2 = [go.layout.Shape(type="circle",
309+
cluster2 = [dict(type="circle",
310310
xref="x", yref="y",
311311
x0=min(x2), y0=min(y2),
312312
x1=max(x2), y1=max(y2),
313313
line=dict(color="RebeccaPurple"))]
314314

315315
fig.update_layout(
316316
updatemenus=[
317-
go.layout.Updatemenu(
317+
dict(
318318
type="buttons",
319319
buttons=[
320320
dict(label="None",
@@ -415,7 +415,7 @@ low_annotations = [dict(x="2015-05-01",
415415

416416
fig.update_layout(
417417
updatemenus=[
418-
go.layout.Updatemenu(
418+
dict(
419419
type="buttons",
420420
direction="right",
421421
active=0,

0 commit comments

Comments
 (0)