Skip to content

[pull] main from doocs:main #205

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 28, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
85 changes: 84 additions & 1 deletion solution/0600-0699/0625.Minimum Factorization/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -42,22 +42,105 @@

<!-- 这里可写通用的实现逻辑 -->

**方法一:贪心 + 因式分解**

我们先判断 $num$ 是否小于 $2$,如果是,直接返回 $num$。然后从 $9$ 开始,尽可能多地将数字分解为 $9$,然后分解为 $8$,以此类推,直到分解为 $2$。如果最后剩下的数字不是 $1$,或者结果超过了 $2^{31} - 1$,则返回 $0$。否则,我们返回结果。

> 注意,分解后的数字,应该依次填充到结果的个位、十位、百位、千位……上,因此我们需要维护一个变量 $mul$,表示当前的位数。

时间复杂度 $O(\log n)$,空间复杂度 $O(1)$。其中 $n$ 为 $num$ 的值。

<!-- tabs:start -->

### **Python3**

<!-- 这里可写当前语言的特殊实现逻辑 -->

```python

class Solution:
def smallestFactorization(self, num: int) -> int:
if num < 2:
return num
ans, mul = 0, 1
for i in range(9, 1, -1):
while num % i == 0:
num //= i
ans = mul * i + ans
mul *= 10
return ans if num < 2 and ans <= 2**31 - 1 else 0
```

### **Java**

<!-- 这里可写当前语言的特殊实现逻辑 -->

```java
class Solution {
public int smallestFactorization(int num) {
if (num < 2) {
return num;
}
long ans = 0, mul = 1;
for (int i = 9; i >= 2; --i) {
if (num % i == 0) {
while (num % i == 0) {
num /= i;
ans = mul * i + ans;
mul *= 10;
}
}
}
return num < 2 && ans <= Integer.MAX_VALUE ? (int) ans : 0;
}
}
```

### **C++**

```cpp
class Solution {
public:
int smallestFactorization(int num) {
if (num < 2) {
return num;
}
long long ans = 0, mul = 1;
for (int i = 9; i >= 2; --i) {
if (num % i == 0) {
while (num % i == 0) {
num /= i;
ans = mul * i + ans;
mul *= 10;
}
}
}
return num < 2 && ans <= INT_MAX ? ans : 0;
}
};
```

### **Go**

```go
func smallestFactorization(num int) int {
if num < 2 {
return num
}
ans, mul := 0, 1
for i := 9; i >= 2; i-- {
if num%i == 0 {
for num%i == 0 {
num /= i
ans = mul*i + ans
mul *= 10
}
}
}
if num < 2 && ans <= math.MaxInt32 {
return ans
}
return 0
}
```

### **...**
Expand Down
77 changes: 76 additions & 1 deletion solution/0600-0699/0625.Minimum Factorization/README_EN.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,13 +28,88 @@
### **Python3**

```python

class Solution:
def smallestFactorization(self, num: int) -> int:
if num < 2:
return num
ans, mul = 0, 1
for i in range(9, 1, -1):
while num % i == 0:
num //= i
ans = mul * i + ans
mul *= 10
return ans if num < 2 and ans <= 2**31 - 1 else 0
```

### **Java**

```java
class Solution {
public int smallestFactorization(int num) {
if (num < 2) {
return num;
}
long ans = 0, mul = 1;
for (int i = 9; i >= 2; --i) {
if (num % i == 0) {
while (num % i == 0) {
num /= i;
ans = mul * i + ans;
mul *= 10;
}
}
}
return num < 2 && ans <= Integer.MAX_VALUE ? (int) ans : 0;
}
}
```

### **C++**

```cpp
class Solution {
public:
int smallestFactorization(int num) {
if (num < 2) {
return num;
}
long long ans = 0, mul = 1;
for (int i = 9; i >= 2; --i) {
if (num % i == 0) {
while (num % i == 0) {
num /= i;
ans = mul * i + ans;
mul *= 10;
}
}
}
return num < 2 && ans <= INT_MAX ? ans : 0;
}
};
```

### **Go**

```go
func smallestFactorization(num int) int {
if num < 2 {
return num
}
ans, mul := 0, 1
for i := 9; i >= 2; i-- {
if num%i == 0 {
for num%i == 0 {
num /= i
ans = mul*i + ans
mul *= 10
}
}
}
if num < 2 && ans <= math.MaxInt32 {
return ans
}
return 0
}
```

### **...**
Expand Down
19 changes: 19 additions & 0 deletions solution/0600-0699/0625.Minimum Factorization/Solution.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
class Solution {
public:
int smallestFactorization(int num) {
if (num < 2) {
return num;
}
long long ans = 0, mul = 1;
for (int i = 9; i >= 2; --i) {
if (num % i == 0) {
while (num % i == 0) {
num /= i;
ans = mul * i + ans;
mul *= 10;
}
}
}
return num < 2 && ans <= INT_MAX ? ans : 0;
}
};
19 changes: 19 additions & 0 deletions solution/0600-0699/0625.Minimum Factorization/Solution.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
func smallestFactorization(num int) int {
if num < 2 {
return num
}
ans, mul := 0, 1
for i := 9; i >= 2; i-- {
if num%i == 0 {
for num%i == 0 {
num /= i
ans = mul*i + ans
mul *= 10
}
}
}
if num < 2 && ans <= math.MaxInt32 {
return ans
}
return 0
}
18 changes: 18 additions & 0 deletions solution/0600-0699/0625.Minimum Factorization/Solution.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
class Solution {
public int smallestFactorization(int num) {
if (num < 2) {
return num;
}
long ans = 0, mul = 1;
for (int i = 9; i >= 2; --i) {
if (num % i == 0) {
while (num % i == 0) {
num /= i;
ans = mul * i + ans;
mul *= 10;
}
}
}
return num < 2 && ans <= Integer.MAX_VALUE ? (int) ans : 0;
}
}
11 changes: 11 additions & 0 deletions solution/0600-0699/0625.Minimum Factorization/Solution.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
class Solution:
def smallestFactorization(self, num: int) -> int:
if num < 2:
return num
ans, mul = 0, 1
for i in range(9, 1, -1):
while num % i == 0:
num //= i
ans = mul * i + ans
mul *= 10
return ans if num < 2 and ans <= 2**31 - 1 else 0