Skip to content

[pull] main from doocs:main #37

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Aug 6, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -96,32 +96,251 @@ tags:

<!-- solution:start -->

### 方法一
### 方法一:动态规划

根据题目描述,从 $(0, 0)$ 出发的小朋友要想在 $n - 1$ 步后到达 $(n - 1, n - 1)$,那么他只能走主对角线上的房间 $(i, i)$,即 $i = 0, 1, \ldots, n - 1$。而从 $(0, n - 1)$ 出发的小朋友只能走主对角线以上的房间,而从 $(n - 1, 0)$ 出发的小朋友只能走主对角线以下的房间。这意味着三个小朋友除了在 $(n - 1, n - 1)$ 到达终点外,其他房间都不会有多个小朋友重复进入。

我们可以用动态规划的方式,计算从 $(0, n - 1)$ 和 $(n - 1, 0)$ 出发的小朋友达到 $(i, j)$ 时,能收集到的水果数。定义 $f[i][j]$ 表示小朋友到达 $(i, j)$ 时能收集到的水果数。

对于从 $(0, n - 1)$ 出发的小朋友,状态转移方程为:

$$
f[i][j] = \max(f[i - 1][j], f[i - 1][j - 1], f[i - 1][j + 1]) + \text{fruits}[i][j]
$$

注意,只有当 $j + 1 < n$ 时,$f[i - 1][j + 1]$ 才是有效的。

对于从 $(n - 1, 0)$ 出发的小朋友,状态转移方程为:

$$
f[i][j] = \max(f[i][j - 1], f[i - 1][j - 1], f[i + 1][j - 1]) + \text{fruits}[i][j]
$$

同样,只有当 $i + 1 < n$ 时,$f[i + 1][j - 1]$ 才是有效的。

最后,答案为 $\sum_{i=0}^{n-1} \text{fruits}[i][i] + f[n-2][n-1] + f[n-1][n-2]$,即主对角线上的水果数加上两个小朋友到达 $(n - 2, n - 1)$ 和 $(n - 1, n - 2)$ 时能收集到的水果数。

时间复杂度 $O(n^2)$,空间复杂度 $O(n^2)$。其中 $n$ 为房间的边长。

<!-- tabs:start -->

#### Python3

```python

class Solution:
def maxCollectedFruits(self, fruits: List[List[int]]) -> int:
n = len(fruits)
f = [[-inf] * n for _ in range(n)]
f[0][n - 1] = fruits[0][n - 1]
for i in range(1, n):
for j in range(i + 1, n):
f[i][j] = max(f[i - 1][j], f[i - 1][j - 1]) + fruits[i][j]
if j + 1 < n:
f[i][j] = max(f[i][j], f[i - 1][j + 1] + fruits[i][j])
f[n - 1][0] = fruits[n - 1][0]
for j in range(1, n):
for i in range(j + 1, n):
f[i][j] = max(f[i][j - 1], f[i - 1][j - 1]) + fruits[i][j]
if i + 1 < n:
f[i][j] = max(f[i][j], f[i + 1][j - 1] + fruits[i][j])
return sum(fruits[i][i] for i in range(n)) + f[n - 2][n - 1] + f[n - 1][n - 2]
```

#### Java

```java

class Solution {
public int maxCollectedFruits(int[][] fruits) {
int n = fruits.length;
final int inf = 1 << 29;
int[][] f = new int[n][n];
for (var row : f) {
Arrays.fill(row, -inf);
}
f[0][n - 1] = fruits[0][n - 1];
for (int i = 1; i < n; i++) {
for (int j = i + 1; j < n; j++) {
f[i][j] = Math.max(f[i - 1][j], f[i - 1][j - 1]) + fruits[i][j];
if (j + 1 < n) {
f[i][j] = Math.max(f[i][j], f[i - 1][j + 1] + fruits[i][j]);
}
}
}
f[n - 1][0] = fruits[n - 1][0];
for (int j = 1; j < n; j++) {
for (int i = j + 1; i < n; i++) {
f[i][j] = Math.max(f[i][j - 1], f[i - 1][j - 1]) + fruits[i][j];
if (i + 1 < n) {
f[i][j] = Math.max(f[i][j], f[i + 1][j - 1] + fruits[i][j]);
}
}
}
int ans = f[n - 2][n - 1] + f[n - 1][n - 2];
for (int i = 0; i < n; i++) {
ans += fruits[i][i];
}
return ans;
}
}
```

#### C++

```cpp

class Solution {
public:
int maxCollectedFruits(vector<vector<int>>& fruits) {
int n = fruits.size();
const int inf = 1 << 29;
vector<vector<int>> f(n, vector<int>(n, -inf));

f[0][n - 1] = fruits[0][n - 1];
for (int i = 1; i < n; i++) {
for (int j = i + 1; j < n; j++) {
f[i][j] = max(f[i - 1][j], f[i - 1][j - 1]) + fruits[i][j];
if (j + 1 < n) {
f[i][j] = max(f[i][j], f[i - 1][j + 1] + fruits[i][j]);
}
}
}

f[n - 1][0] = fruits[n - 1][0];
for (int j = 1; j < n; j++) {
for (int i = j + 1; i < n; i++) {
f[i][j] = max(f[i][j - 1], f[i - 1][j - 1]) + fruits[i][j];
if (i + 1 < n) {
f[i][j] = max(f[i][j], f[i + 1][j - 1] + fruits[i][j]);
}
}
}

int ans = f[n - 2][n - 1] + f[n - 1][n - 2];
for (int i = 0; i < n; i++) {
ans += fruits[i][i];
}

return ans;
}
};
```

#### Go

```go
func maxCollectedFruits(fruits [][]int) int {
n := len(fruits)
const inf = 1 << 29
f := make([][]int, n)
for i := range f {
f[i] = make([]int, n)
for j := range f[i] {
f[i][j] = -inf
}
}

f[0][n-1] = fruits[0][n-1]
for i := 1; i < n; i++ {
for j := i + 1; j < n; j++ {
f[i][j] = max(f[i-1][j], f[i-1][j-1]) + fruits[i][j]
if j+1 < n {
f[i][j] = max(f[i][j], f[i-1][j+1]+fruits[i][j])
}
}
}

f[n-1][0] = fruits[n-1][0]
for j := 1; j < n; j++ {
for i := j + 1; i < n; i++ {
f[i][j] = max(f[i][j-1], f[i-1][j-1]) + fruits[i][j]
if i+1 < n {
f[i][j] = max(f[i][j], f[i+1][j-1]+fruits[i][j])
}
}
}

ans := f[n-2][n-1] + f[n-1][n-2]
for i := 0; i < n; i++ {
ans += fruits[i][i]
}

return ans
}
```

#### TypeScript

```ts
function maxCollectedFruits(fruits: number[][]): number {
const n = fruits.length;
const inf = 1 << 29;
const f: number[][] = Array.from({ length: n }, () => Array(n).fill(-inf));

f[0][n - 1] = fruits[0][n - 1];
for (let i = 1; i < n; i++) {
for (let j = i + 1; j < n; j++) {
f[i][j] = Math.max(f[i - 1][j], f[i - 1][j - 1]) + fruits[i][j];
if (j + 1 < n) {
f[i][j] = Math.max(f[i][j], f[i - 1][j + 1] + fruits[i][j]);
}
}
}

f[n - 1][0] = fruits[n - 1][0];
for (let j = 1; j < n; j++) {
for (let i = j + 1; i < n; i++) {
f[i][j] = Math.max(f[i][j - 1], f[i - 1][j - 1]) + fruits[i][j];
if (i + 1 < n) {
f[i][j] = Math.max(f[i][j], f[i + 1][j - 1] + fruits[i][j]);
}
}
}

let ans = f[n - 2][n - 1] + f[n - 1][n - 2];
for (let i = 0; i < n; i++) {
ans += fruits[i][i];
}

return ans;
}
```

#### Rust

```rust
impl Solution {
pub fn max_collected_fruits(fruits: Vec<Vec<i32>>) -> i32 {
let n = fruits.len();
let inf = 1 << 29;
let mut f = vec![vec![-inf; n]; n];

f[0][n - 1] = fruits[0][n - 1];
for i in 1..n {
for j in i + 1..n {
f[i][j] = std::cmp::max(f[i - 1][j], f[i - 1][j - 1]) + fruits[i][j];
if j + 1 < n {
f[i][j] = std::cmp::max(f[i][j], f[i - 1][j + 1] + fruits[i][j]);
}
}
}

f[n - 1][0] = fruits[n - 1][0];
for j in 1..n {
for i in j + 1..n {
f[i][j] = std::cmp::max(f[i][j - 1], f[i - 1][j - 1]) + fruits[i][j];
if i + 1 < n {
f[i][j] = std::cmp::max(f[i][j], f[i + 1][j - 1] + fruits[i][j]);
}
}
}

let mut ans = f[n - 2][n - 1] + f[n - 1][n - 2];
for i in 0..n {
ans += fruits[i][i];
}

ans
}
}
```

<!-- tabs:end -->
Expand Down
Loading
Loading